YOMEDIA
NONE
  • Câu hỏi:

    Giải phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) 

    • A. \(S = \left\{ {2;3} \right\}\) 
    • B. \(S = \left\{ {- 1;3} \right\}\) 
    • C. \(S = \left\{ {1;3} \right\}\) 
    • D. \(S = \left\{ {1;2} \right\}\) 

    Lời giải tham khảo:

    Đáp án đúng: C

    Nhận thấy x = 0 không là nghiệm của phương trình nên chia hai vế của phương trình cho  \({x^2} \ne 0\) ta được:

    \(\frac{{{x^2} - 3x + 3}}{x}.\frac{{{x^2} - 2x + 3}}{x} = 2 \Leftrightarrow \left( {x + \frac{3}{x} - 3} \right)\left( {x + \frac{3}{x} - 2} \right) = 2\)

    Đặt  \(t = x + \frac{3}{x} – 3\) , ta có:

    \(\begin{array}{l}pt \Leftrightarrow t\left( {t + 1} \right) = 2 \Leftrightarrow {t^2} + t - 2 = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left( {t - 1} \right)\left( {t + 2} \right) = 0\\\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}t - 1 = 0\\t + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 2\end{array} \right..\end{array}\)

    Với \(t = 1 \Rightarrow x + \frac{3}{x} - 3 = 1 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow\left( {x - 1} \right)\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

    Với \(t =  - 2 \Rightarrow x + \frac{3}{x} - 3 =  - 2 \Leftrightarrow {x^2} - x + 3 = 0 \Leftrightarrow {\left( {x - \frac{1}{2}} \right)^2} + \frac{{11}}{4} = 0\) vô nghiệm

    Chọn C

    ATNETWORK

Mã câu hỏi: 373453

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON