YOMEDIA
NONE
  • Câu hỏi:

    Một người đo chiều cao của cây nhờ 1 cọc chôn xuống đất, cọc cao 2,45 m và đặt xa cây 1,36 m. Sau khi người ấy lùi ra xa cách cọc 0,64 m thì người ấy nhìn thấy đầu cọc và đỉnh cây cùng nằm trên một đường thẳng. Hỏi cây cao bao nhiêu? Biết khoảng cách từ chân đến mắt người ấy là 1,65 m.

    • A. \(4,51\ m\)  
    • B. \(5,14\ m\)   
    • C. \(5,41\ m\)   
    • D. \(4,15\ m\)  

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta mô tả vị trí cây, cọc và người như hình vẽ bên.

    Xét \(\Delta BFE\) và \(\Delta BNM\) ta có:

    \(\widehat{B}\ chung\)

    \(\widehat{BEF}=\widehat{BMN}\) (vì \(EF\parallel MN\),  cặp góc đồng vị bằng nhau)

    \(\Rightarrow \Delta BFE\backsim \Delta BNM\ (g-g)\)

    \(\begin{align} & \Rightarrow \frac{BF}{BN}=\frac{FE}{NM}\Leftrightarrow \frac{BF}{BF+FN}=\frac{FE}{NM}\Leftrightarrow \frac{BF}{BF+0,64}=\frac{1,65}{2,45} \\& \Leftrightarrow 1,65\left( BF+0,64 \right)=2,45.BF \\ & \Leftrightarrow BF=1,32\ \ m. \\\end{align}\)

    Xét \(\Delta BFE\) và \(\Delta BCA\) có:

    \(\widehat{B}\ chung\)

    \(\widehat{BEF}=\widehat{BAC}\) (vì \(EF\parallel AC\), cặp góc đồng vị bằng nhau)

    \(\Rightarrow \Delta BFE\backsim \Delta BCA\ (g-g)\)

    \(\begin{align}  & \Rightarrow \frac{BF}{BC}=\frac{FE}{CA}\Leftrightarrow \frac{BF}{BF+FN+NC}=\frac{FE}{CA}\Leftrightarrow \frac{1,32}{1,32+0,64+1,36}=\frac{1,65}{CA} \\ & \Rightarrow CA=4,15\ m \\\end{align}\)

    Vậy cây cao đúng bằng độ dài của đoạn CA hay cây cao 4,15 m.

    Chọn D.

    ATNETWORK

Mã câu hỏi: 373437

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON