-
Câu hỏi:
Cho tứ diện \(ABCD\) và \(M\) là điểm ở trên cạnh \(AC\). Mp \(\left( \alpha \right)\) qua và \(M\) song song với \(AB\) và \(CD\). Thiết diện của tứ diện cắt bởi \(\left( \alpha \right)\) là?
- A. hình chữ nhật.
- B. hình bình hành.
- C. hình thang.
- D. hình thoi.
Lời giải tham khảo:
Đáp án đúng: B
Trên \(\left( ABC \right)\) kẻ \(MN\text{//}AB;\,\,\,N\in BC\).
Trên \(\left( BCD \right)\) kẻ \(NP\text{//}CD;\,\,\,P\in BD\).
Ta có \(\left( \alpha \right)\) chính là mặt phẳng \(\left( MNP \right)\).
Sử dụng đính lý ba giao tuyến ta có:
\(\left( MNP \right)\cap AD=\left\{ Q \right\}\) với \(MQ\text{//}CD\text{//}NP\)
Ta có:
\(\left. \begin{align} & MQ\text{//}NP\text{//}CD \\ & MN\text{//}PQ\text{//}AB \\ \end{align} \right\}\) \(\Rightarrow \) thiết diện \(MNPQ\) là hình bình hành.
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho 2 đường thẳng \(a\) và \(b\) chéo nhau. Có bao nhiêu mp chứa \(a\) và song song với \(b\)?
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là HBH tâm \(O\), \(I\) là trung điểm cạnh \(SC\). Khẳng định nào SAI?
- Trong không gian có mấy vị trí tương đối giữa đường thẳng & mặt phẳng?
- Cho tứ diện \(ABCD\). Gọi \(G\) là trọng tâm của tam giác \(ABD\) & \(M\) là điểm trên cạnh \(BC\) sao cho \(BM=2MC\).
- Cho mp \(\left( P \right)\) và điểm \(A\) không thuộc mặt phẳng \(\left( P \right)\). Số đường thẳng qua điểm \(A\) và song song với mp \(\left( P \right)\) là?
- Khẳng định nào bên dưới đây đúng?
- Cho tứ diện \(ABCD\) và \(M\) là điểm ở trên cạnh \(AC\). Mp \(\left( \alpha \right)\) qua và \(M\) song song với \(AB\) và \(CD\). Thiết diện của tứ diện cắt bởi \(\left( \alpha \right)\) là?
- Cho 2 đường thẳng \(a\) và \(b\) cùng song song với \(mp\left( P \right)\). Khẳng định nào không sai?
- Cho mp \(\left( \alpha \right)\) và đường thẳng \(d\not\subset \left( \alpha \right)\). Khẳng định nào sai?
- Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, \(AD\text{//}BC\), \(AD=2.BC\), \(M\) là trung điểm \(SA\).