-
Câu hỏi:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Hỏi hàm số \(f\left( x \right)\) không liên tục tại điểm nào sau đây?
- A. \({x_0} = 1\).
- B. \({x_0} = 2\).
- C. \({x_0} = 3\).
- D. \({x_0} = 0\).
Lời giải tham khảo:
Đáp án đúng: A
Dựa vào đồ thị hàm số ta thấy hàm số không liên tục tại \({x_0} = 1\).
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho cấp số nhân \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = 2\) và công bội \(q = - 3\). Giá trị của \({u_3}\) bằng:
- Cho cấp số cộng \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = - 5\) và công sai \(d = 3\). Tổng của 50 số hạng đầu tiên là:
- Cho cấp số nhân \(\left( {{v_n}} \right)\) thỏa mãn \(\left\{ \begin{array}{l}{v_2} = 2\\{v_5} = 16\end{array} \right.\). Khi đó ta có:
- Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\{u_n} = \dfrac{1}{{2 - {u_{n - 1}}}},\,\,\forall n > 1\end{array} \right.\). Giá trị của \({u_4}\) bằng:
- Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_n} = \dfrac{{2n + 1}}{{n + 1}},\,\,\forall n \ge 1\). Khẳng định nào sau đây là sai?
- Với số thực \(a\) cho trước, giá trị của \(\lim \dfrac{{a.n + 2}}{{2n + 1}}\) là:
- Giá trị của \(\lim \left( {\sqrt {{n^2} - 2n - 2} - n} \right)\) là:
- Giá trị của \(\lim \dfrac{{{4^n} + {6^n}}}{{{6^{n - 1}} - {5^n}}}\) là:
- Cho tứ diện \(ABCD\) có \(M\) là trung điểm \(AB,\,\,N\) là trung điểm \(AC\). Mệnh đề nào sau đây đúng?
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\). Biết rằng \(SA = SB = SC = SD\). Khẳng định nào sau đây là sai?
- Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = a\). Khi đó góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) có số đo là:
- Cho hình chóp \(S.ABC\). Đáy \(ABC\) là tam giác vuông cân tại \(B,\,\,AC = 2a\). Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = a\). Khi đó, cosin của góc tạo bởi \(SC\) và mặt phẳng \(\left( {SAB} \right)\) có giá trị là:
- Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Hỏi hàm số \(f\left( x \right)\) không liên tục tại điểm nào sau đây?
- Đạo hàm của hàm số \(f\left( x \right) = {\left( {{x^2} + 1} \right)^4}\) tại điểm \(x = - 1\) là
- Khẳng định dẫ cho nào sau đây là khẳng định sai?
- Trong các mệnh đề sau đây, mệnh đề đã cho nào sai?
- Tính giới hạn \(\lim \left( {\sqrt {9{n^2} + 2n} - 3n + 8} \right)\) ta được kết quả:
- Tính \(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{2x + 1}}{{x - 3}}\) ta được kết quả.
- Trong không gian cho tứ diện đều\(\overrightarrow {AC'} = \dfrac{1}{2}\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \). Khẳng định nào sau đây là sai:
- Xác định mệnh đề nào đúng trong các mệnh đề sau?
- Với mệnh đề cho nào đúng trong các mệnh đề sau?
- Biết \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 + ax} - 1}}{x} = 3,\,\,\,\,\left( {a \in \mathbb{R}} \right)\), tìm giá trị của \(a\)?
- Cho \(\mathop {\lim }\limits_{x \to \,{x_0}} f\left( x \right) = L;\) \(\,\mathop {\lim }\limits_{x \to \,{x_0}} g\left( x \right) = M\), với \(L,M \in \mathbb{R}\). Chọn khẳng định sai.
- Cho đồ thị của hàm số \(f\left( x \right)\) trên khoảng \(\left( {a;\,\,b} \right)\). Biết rằng tiếp tuyến của đồ thị hàm số \(f\left( x \right)\) tại các điểm \({M_1};\,\,{M_2};\,\,{M_3}\) như hình vẽ.
- Tính giới hạn \(\lim \dfrac{{{5^n} - {{3.4}^n}}}{{{{6.7}^n} + {8^n}}}\) ta được kết quả:
- Tìm \(a\) để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + ax + 2{\rm{ khi }}x > 1\\2{x^2} - x + 3a{\rm{ khi }}x \le 1\end{array} \right.\) có giới hạn tại \(x = 1\).
- Trong không gian cho đường thẳng \(\Delta \) và điểm \(O\). Qua \(O\) có bao nhiêu đường thẳng vuông góc với \(\Delta \)?
- Cho hàm số \(y = {x^3} - 3{x^2} + 2\) có đồ thị \(\left( C \right)\). Tiếp tuyến của đồ thị \(\left( C \right)\) tại điểm có hoành độ bằng 3 có dạng \(ax + by - 25 = 0\). Khi đó, tổng \(a + b\) bằng:
- Trong không gian cho hai đường thẳng \(CC'\) và \(b\) lần lượt có vectơ chỉ phương là \(\overrightarrow u ,\,\,\overrightarrow v \). Gọi \(\alpha \) là góc giữa hai đường thẳng \(a\) và \(b\). Khẳng định nào sau đây là đúng:
- Hình hộp chữ nhật có 3 kích thước là \(2;\,\,3;\,\,4\) thì độ dài đường chéo của nó là
- Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {x + 4} - 2}}{x}\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x > 0\\m{x^2} + 2m + \dfrac{1}{4}\,\,\,{\rm{khi}}\,\,x \le 0\end{array} \right.\), với \(m\) là tham số. Gọi \({m_0}\) là giá trị của tham số \(m\) để hàm số \(f\left( x \right)\) liên tục tại \(x = 0\). Hỏi \({m_0}\) thuộc khoảng nào dưới đây?
- Cho hàm số \(y = f\left( x \right) = \sqrt {x - 1} \). Trong các mệnh đề sau đây, có bao nhiêu mệnh đề đúng?
- Cho tứ diện là \(ABCD\) với trọng tâm \(G\). Chọn mệnh đề đúng
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh \(SA = a\sqrt 3 \), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Góc giữa đường thẳng \(CD\) và mặt phẳng \(\left( {SBC} \right)\) là:
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 1}}{{{x^2} - x - 2}} = 3\). Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{f^3}\left( x \right) + 3f\left( x \right) - 4}}{{{x^2} - 2x}}\)
- Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\left( {2{m^2} - 5m + 2} \right){\left( {x - 1} \right)^{18}}\left( {{x^{81}} - 2} \right) + 2x + 3 = 0\) có nghiệm:
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, cạnh bên \(SA = AB\) và \(SA\) vuông góc với \(BC\). Góc giữa hai đường thẳng \(SD\) và \(BC\) là?
- Tính các giới hạn sau: \(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3{x^2} + 2}}{{{x^2} - 4{\rm{x}} + 3}}\)
- Tính đạo hàm của hàm số sau: \(y = \dfrac{{{x^2} + 2x - 1}}{{x + 1}}\)
- Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to + \infty } x\left( {\sqrt {{x^2} + 2{\rm{x}}} - 2\sqrt {{x^2} + x} + x} \right)\).