YOMEDIA
NONE

Khám phá 3 trang 70 SGK Toán 8 Chân trời sáng tạo Tập 1 - KNTT

Khám phá 3 trang 70 SGK Toán 8 Chân trời sáng tạo Tập 1

Cho hình thang ABCD có hai đáy là AB, CD và có hai đường chéo bằng nhau (Hình 10). Vẽ đường thẳng đi qua C, song song với BD và cắt AB tại E.

a) Tam giác CAE là tam giác gì? Vì sao?

b) So sánh tam giác ABD và tam giác BAC.

ATNETWORK

Hướng dẫn giải chi tiết Khám phá 3

a) Xét hình thang ABCD có AB // CD hay AE // DC nên DCB^=EBC^ (so le trong)

Do DB // CE nên DBC^=ECB^ (so le trong).

Xét DDCB và DEBC có:

DCB^=EBC^ (chứng minh trên);

CB là cạnh chung;

DBC^=ECB^ (chứng minh trên).

Do đó DDCB = DEBC (g.c.g).

Suy ra BD = CE (hai cạnh tương ứng)

Mà AC = BD (giả thiết)

Nên AC = CE.

Xét DACE có AC = CE nên là tam giác cân tại C.

b) Do DACE cân tại C (câu a) nên CAE^=CEA^ (hai góc tương ứng).

Mặt khác DB // CE nên DBA^=CEA^ (đồng vị).

Do đó CAE^=DBA^=CEA^.

Xét DABD và DBAC có:

AB là cạnh chung;

DBA^=CAB^ (chứng minh trên);

BD = AC (giả thiết).

Do đó DABD = DBAC (c.g.c).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Khám phá 3 trang 70 SGK Toán 8 Chân trời sáng tạo Tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON