Bài tập 3.10 trang 34 SBT Toán 8 Tập 1 Kết nối tri thức
Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD?
Hướng dẫn giải chi tiết Bài tập 3.10
Do ABCD là hình thang cân nên AD = BC, AC = BD,
Xét ∆ABC và ∆BAD có
BC = AD, AC = BD, cạnh AB chung
Do đó ∆ABC = ∆BAD (c.c.c)
Suy ra .
Từ đó OAB là tam giác cân tại O, nên OA = OB.
Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD
Suy ra OC = OD.
Do đó O cách đều A và B; O cách đều C và D;
Do AB // CD nên ; (các cặp góc ở vị trí đồng vị)
Mà hay suy ra
Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD
Do đó S cũng cách đều A và B, cách đều C và D.
Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.
-- Mod Toán 8 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.