YOMEDIA
NONE

Bài tập 3.10 trang 34 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT

Bài tập 3.10 trang 34 SBT Toán 8 Tập 1 Kết nối tri thức

Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD?

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 3.10

Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD BC cắt nhau tại S

Do ABCD là hình thang cân nên AD = BC, AC = BD, ADC^=BCD^

Xét ∆ABC và ∆BAD có

BC = AD, AC = BD, cạnh AB chung

Do đó ∆ABC = ∆BAD (c.c.c)

Suy ra BAC^=ABD^.

Từ đó OAB là tam giác cân tại O, nên OA = OB.

Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD

Suy ra OC = OD.

Do đó O cách đều A và B; O cách đều C và D;

Do AB // CD nên SAB^=SDC^;SBA^=SCD^ (các cặp góc ở vị trí đồng vị)

ADC^=BCD^ hay SDC^=SCD^ suy ra SAB^=SDC^=SBA^=SCD^

Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD

Do đó S cũng cách đều A và B, cách đều C và D.

Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.10 trang 34 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON