YOMEDIA
NONE

Bài 3 trang 85 SGK Toán 8 Tập 2 Cánh diều - CD

Bài 3 trang 85 SGK Toán 8 Tập 2 Cánh diều

Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh:

a) \(\Delta ACD \backsim \Delta BCE\) và \(CA.CE = CB.CD\)

b) \(\Delta ACD \backsim \Delta AHE\) và \(AC.AE = AD.AH\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 3

a) Xét tam giác ACD và tam giác BCE có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ ;\,\,\widehat C\) chung

\( \Rightarrow \Delta ACD \backsim \Delta BCE\) (g - g)

\( \Rightarrow \frac{{CA}}{{CB}} = \frac{{CD}}{{CE}}\) (Tỉ số đồng dạng) \( \Rightarrow CA.CE = CB.CD\)

b) Xét tam giác ACD và tam giác AHE có:

\(\widehat {ADC} = \widehat {AEH} = 90^\circ ;\,\,\widehat A\) chung

\( \Rightarrow \Delta ACD \backsim \Delta AHE\) (g - g)

\( \Rightarrow \frac{{AC}}{{AH}} = \frac{{AD}}{{AE}}\) (Tỉ số đồng dạng)

\( \Rightarrow AC.AE = AD.AH\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài 3 trang 85 SGK Toán 8 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON