-
Câu hỏi:
Một hình chóp tứ giác đều S.ABCD có cạnh bên SA = 13cm và độ dài cạnh đáy là 5\(\sqrt 2\). Tính thể tích của hình chóp tứ giác đều.
- A. 200cm3
- B. 150cm3
- C. 180cm3
- D. 210cm3
Lời giải tham khảo:
Đáp án đúng: A
Gọi O là giao điểm của AC và BD.
Áp dụng định lí Pytago vào tam giác vuông ABC có:
AC2 = AB2 + BC2 = \({\left( {5\sqrt 2 } \right)^2} + {\left( {5\sqrt 2 } \right)^2} = 100\)
=> AC = 10cm; AO = \(\frac{1}{2}\)AC = 5cm
Áp dụng định lí Pytago vào tam giác vuông SAO có:
SO2 = SA2 - AO2 = 132 - 52 = 144 nên SO = 12cm
Diện tích đáy là: \({\left( {5\sqrt 2 } \right)^2}\) = 50cm2
Thể tích của hình chóp là: V = \(\frac{1}{3}\).50.12 = 200 cm3
Chọn đáp án A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Một hình chóp tứ giác đều có độ dài cạnh đáy là \(6cm\), chiều cao là \(4cm\) thì diện tích xung quanh là:
- Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước cho ở hình bên dưới.
- Cho hình chóp cụt đều có 2 đáy là các hình vuông cạnh a và 2a, trung đoạn bằng a. Tính diện tích xung quanh của hình chóp cụt đều?
- Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước trên hình vẽ.
- Người ta muốn làm một cái nhà kho bằng tôn hình lăng trụ tứ giác đều có mái che là bốn hình chóp tứ giác đều với kích thước đã cho trên hình. Tính diện tích tôn cần thiết dùng để lợp mái và che xung quanh.
- Một hình chóp tứ giác đều S.ABCD có cạnh bên SA = 13cm và độ dài cạnh đáy là 5. Tính thể tích của hình chóp tứ giác đều.
- Một hình chóp tứ giác đều S.ABCD có độ dài cạnh bên là 13cm và đáy là hình vuông cạnh 10cm. Tính diện tích xung quanh của hình chóp?
- Cho hình chóp tam giác đều cạnh 5cm và độ dài trung đoạn là 6cm. Tính diện tích xung quanh của hình chóp?
- Hãy chọn câu đúng. Hình chóp đều có chiều cao h, thể tích V. Diện tích đáy S bằng:
- Chọn câu đúng. Diện tích xung quanh hình chóp đều được tính theo công thức: