YOMEDIA
NONE

Luyện tập 4 trang 68 SGK Toán 8 Tập 2 Cánh diều - CD

Luyện tập 4 trang 68 SGK Toán 8 Tập 2 Cánh diều

Cho tam giác ABC, điểm D thuộc cạnh BC sao cho \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\). Chứng minh AD là tia phân giác của góc BAC?

ATNETWORK

Hướng dẫn giải chi tiết Luyện tập 4

Từ B kẻ đường thẳng song song với AC, cắt AD tại K.

Vì \(BK//AC\) nên theo hệ quả của định lý Thales, ta có: \(\frac{{DB}}{{DC}} = \frac{{BK}}{{AC}}\)

Mà \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\) nên \(\frac{{BK}}{{AC}} = \frac{{AB}}{{AC}} \Rightarrow AB = BK\)

Khi đó tam giác ABK cân tại B nên \(\widehat {BAK} = \widehat {BKA}\)

Mà \(BK//AC\) nên \(\widehat {BKA} = \widehat {KAC}\)

\( \Rightarrow \widehat {BAK} = \widehat {KAC}\)

Vậy AD là đường phân giác trong tam giác ABC.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Luyện tập 4 trang 68 SGK Toán 8 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON