Bài 5 trang 22 SGK Toán 8 Chân trời sáng tạo Tập 2
Gọi \(C\) và \(r\) lần lượt là chu vi và bán kính của một đường tròn. Hãy chứng tỏ \(C\) là một hàm số bậc nhất theo biến số \(r\). Tìm hệ số \(a,b\) của hàm số này?
Hướng dẫn giải chi tiết Bài 5
Công thức tính chu vi đường tròn:
\(C = \pi .d = \pi .2r\) (đơn vị độ dài).
Trong đó, \(C\) là chu vi đường tròn; \(r\) là bán kính đường tròn; \(d\) là đường kính đường tròn.
Vì \(C = 2\pi .r\) nên \(C\) là hàm số bậc nhất theo biến \(r\) vì có dạng \(C = a.r + b\).
Ta có: \(C = 2\pi .r\) nên \(a = 2\pi ;b = 0\).
Vậy C là một hàm số bậc nhất theo biến \(r\) với \(a = 2\pi ;b = 0\).
-- Mod Toán 8 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.