Bài 4 trang 17 SGK Toán 8 Tập 1 Cánh diều
a) Rút gọn rồi tính giá trị của biểu thức:
P = (5x2 – 2xy + y2) – (x2 + y2) – (4x2 – 5xy + 1)
khi x = 1,2 và x + y = 6,2.
b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
(x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3).
Hướng dẫn giải chi tiết Bài 4
a) Ta rút gọn biểu thức P như sau:
P = (5x2 – 2xy + y2) – (x2 + y2) – (4x2 – 5xy + 1)
= 5x2 – 2xy + y2–x2 – y2–4x2 + 5xy – 1
= (5x2 –x2 –4x2) + (5xy – 2xy) + (y2– y2) – 1
= 3xy – 1.
Ta có: x = 1,2; x + y = 6,2 suy ra y = 6,2 – x = 6,2 – 1,2 = 5.
Khi đó, giá trị của biểu thức P khi x = 1,2 và y = 5 là:
3.1,2.5 – 1 = 18 – 1 = 17.
b) Ta có: (x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3)
= (2x3 – 10x2+ 8x + 3x2– 15x + 12) –(2x3 – x2 – 10x – 6x2 + 3x + 30)
= (2x3 – 7x2– 7x+ 12) – (2x3 – 7x2 – 7x + 30)
= 2x3 – 7x2– 7x+ 12–2x3 +7x2+ 7x – 30
= (2x3 – 2x3) +(7x2 – 7x2) +(7x – 7x) + (12– 30) = – 8.
Khi đó, với mọi giá trị của biến x thì (x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3) = – 8.
Vậy giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.
-- Mod Toán 8 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.