Bài tập 39 trang 82 SGK Toán 9 Tập 2

Giải bài 39 tr 82 sách GK Toán 9 Tập 2

Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S.Chứng minh ES = EM

Hướng dẫn giải chi tiết bài 39

Để chứng minh hai cạnh bằng nhau ở bài 39, ta sẽ chứng minh hai góc bằng nhau trong tam giác cân. Muốn chứng minh các góc bằng nhau, ta xem các góc ấy có nằm trong các góc đã học hay không rồi dựa vào các tính chất để suy ra bài toán.

Ta có góc MSE là góc có đỉnh nằm trong đường tròn nên:

\(\widehat{MSE}=\frac{sd\widehat{AC}+sd\widehat{BM}}{2}\)

 Góc CME là góc tạo bởi tiếp tuyến ME và dây cung MC nên:

\(\widehat{CME}=\frac{sd\widehat{CM}}{2}=\frac{sd\widehat{CB}+sd\widehat{BM}}{2}\)

Mà AB và CD là hai đường kính vuông góc với nhau nên chia đường tròn thành 4 cung có số đo bằng nhau, tức là:

\(sd\widehat{AC}=sd\widehat{BC}\)

Từ các điều trên, ta suy ra được:

\(\widehat{MSE}=\widehat{SME}\)

Vậy tam giác SEM cân tại E

\(\Rightarrow SE=EM\Rightarrow dpcm\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 39 trang 82 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
  • Nguyễn Xuân Ngạn

    Bài 30 (Sách bài tập - tập 2 - trang 105)

    Hai dây cung AB và CD kéo dài cắt nhau tại điểm E ở ngoài đường tròn (O) (B nằm giữa A và E, C nằm giữa D và E). Cho biết \(\widehat{CBE}=75^0,\widehat{CEB}=22^0,\widehat{AOD}=144^0\)

     

    Chứng minh :

     

                              \(\widehat{AOB}=\widehat{BAC}\)

     

    Theo dõi (0) 1 Trả lời
  • Hoa Hong

    Bài 29 (Sách bài tập - tập 2 - trang 105)

    Cho tam giác ABC vuông ở A. Đường tròn đường kính AB cắt BC ở D. Tiếp tuyến ở D cắt AC ở P. Chứng minh PD = PC

     

    Theo dõi (0) 1 Trả lời