ON
YOMEDIA
VIDEO

Bài tập 11 trang 142 SGK Toán 11 NC

Bài tập 11 trang 142 SGK Toán 11 NC

Tìm giới hạn của các dãy số (un) với:

a) \({u_n} = \frac{{ - 2{n^3} + 3n - 2}}{{3n - 2}}\)

b) \({u_n} = \frac{{\sqrt[3]{{{n^5} - 7{n^3} - 5n + 8}}}}{{n + 12}}\)

YOMEDIA

Hướng dẫn giải chi tiết

 
 

a) Ta có 

\({u_n} = \frac{{{n^3}\left( { - 2 + \frac{3}{{{n^2}}} - \frac{2}{{{n^3}}}} \right)}}{{{n^3}\left( {\frac{3}{{{n^2}}} - \frac{2}{{{n^3}}}} \right)}} = \frac{{ - 2 + \frac{3}{{{n^2}}} - \frac{2}{{{n^3}}}}}{{\frac{3}{{{n^2}}} - \frac{2}{{{n^3}}}}}\)

Vì \(\lim \left( { - 2 + \frac{3}{{{n^2}}} - \frac{2}{{{n^3}}}} \right) =  - 2 < 0,\)

\(\lim \left( {\frac{3}{{{n^2}}} - \frac{2}{{{n^3}}}} \right) = 0\) nên \(\lim {u_n} =  - \infty \)

b) Chia tử và mẫu của phân thức cho n, ta được:

\({u_n} = \frac{{n\sqrt[3]{{1 - \frac{7}{{{n^3}}} - \frac{5}{{{n^5}}} + \frac{8}{{{n^6}}}}}}}{{1 + \frac{{12}}{n}}}\)

Vì \(\lim n\sqrt[3]{{1 - \frac{7}{{{n^3}}} - \frac{5}{{{n^5}}} + \frac{8}{{{n^6}}}}} =  + \infty ,\)

\(\lim \left( {1 + \frac{{12}}{n}} \right) = 1 > 0\) nên \(\lim {u_n} =  + \infty \).

-- Mod Toán 11 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 11 trang 142 SGK Toán 11 NC HAY thì click chia sẻ 
YOMEDIA

 

YOMEDIA
1=>1