YOMEDIA
NONE

Tìm cặp số nguyên tố p,q sao cho p^2 +q^2 = 2(p-q)^3

Tìm cặp số nguyên tố p,q sao cho

\(p^2+q^2=2\left(p-q\right)^3\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Ta có: \(p^2+q^2=2(p-q)^3\)

    \(\Leftrightarrow (p-q)^2+2pq=2(p-q)^3\)

    \(\Leftrightarrow 2pq=2(p-q)^3-(p-q)^2=(p-q)^2(2p-2q-1)\)

    Do $p,q$ là các số nguyên tố, $2p-2q-1$ lẻ nên ta sẽ xét những TH sau đây:

    TH1: \(\left\{\begin{matrix} (p-q)^2=2p\\ 2p-2q-1=q\end{matrix}\right.\)

    Nếu \((2,p)=1\) thì vì tích của chúng là một scp nên bản thân $2,p$ cũng là scp (điều này hoàn toàn vl)

    Do đó $(2,p)\neq 1$, suy ra \(p=2\)

    \(\Rightarrow q=\frac{2p-1}{3}=1\) (vl)

    TH2: \(\left\{\begin{matrix} (p-q)^2=2q\\ 2p-2q-1=p\end{matrix}\right.\), tương tự như TH1, vô lý

    TH3:

    \(\left\{\begin{matrix} (p-q)^2=2pq\\ 2p-2q-1=1\end{matrix}\right.\)

    \(\Leftrightarrow \left\{\begin{matrix} (p-q)^2=2pq\\ p=q+1\end{matrix}\right.\Rightarrow 1=2pq\) (VL)

    Vậy không tồn tại $p,q$ thỏa mãn phương trình.

      bởi Nguyen huong 28/12/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON