YOMEDIA
NONE

Tìm GTLN của k/c từ gốc toạ độ O đến mặt phẳng (ABC)

Cho các điểm A(a;0;0) B(0;b;0) C( 0;0;c) trong đó a,b,c>0, a^2+b^2+c^2=3. Tìm giá trị lớn nhất của khoảng cách từ gốc toạ độ O đến mặt phẳng (ABC).

Theo dõi Vi phạm
ATNETWORK

Trả lời (2)

  • \(\left(ABC\right):\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

    \(d\left[O,\left(ABC\right)\right]=\dfrac{1}{\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}}\)

    \(d_{max}\Rightarrow\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)_{min}\)

    Theo cô si: \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow3\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow a^2b^2c^2\le1\) \(\Leftrightarrow\dfrac{1}{a^2b^2c^2}\ge1\)

    Và: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\sqrt[3]{\dfrac{1}{a^2}\dfrac{1}{b^2}.\dfrac{1}{c^2}}\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)

    Dấu "=" xảy ra khi \(\dfrac{1}{a^2}=\dfrac{1}{b^2}=\dfrac{1}{c^2}\Leftrightarrow a=b=c=1\)

    \(\Rightarrow d_{max}=\dfrac{\sqrt{3}}{3}\)

      bởi Trần Giang 24/10/2018
    Like (0) Báo cáo sai phạm
  • YOMEDIA

    Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

  • Đáp án:

    \frac{\sqrt{3}}{3}

      bởi Lê Thanh Ngọc 28/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON