YOMEDIA

Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)

Hôm nay thầy em giao bài này về nhà mà em không có biết làm, mn giúp em vs!

Cho các số thực dương x, y thỏa mãn điều kiện x + y = 2016 .Tìm giá trị nhỏ nhất của biểu thức
\(P=\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • \(P=A+B\). Trong đó 

    \(A=\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}\) và

    \(B=\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
    \(6A=\sqrt{180x^2+36xxy+108y^2}+\sqrt{108x^2+36xy+180y^2}\)
    \(=\sqrt{(11x+7y)^2+59(x-y)^2}+\sqrt{(11y+7x)^2+59(y-x)^2}\)
    \(\geq (11x+7y)+(11y+7x)=18(x+y)\)
    \(\Rightarrow A\geq 3(x+y)=3.2016=6048 \ (*)\) dấu đẳng thức xảy ra khi và chỉ khi x = y = 1008
    \(4B=\sqrt{16x^2+16xy+32y^2}+\sqrt{32x^2+16xy+16y^2}\)
    \(=\sqrt{(3x+5y)^2+7(x-y)^2}+\sqrt{(3y+5x)^2+7(y-x)^2}\)
    \(\geq (3x+5y)+(3y+5x)=8(x+y)\)
    \(\Rightarrow B\geq 2(x+y)=2.2016=4032\) (**) dấu đẳng thức xảy ra khi và chỉ khi x = y = 1008
    Từ (*) và (**) ta đươc \(P=A+B\geq 6048+4032=10080\), dấu đẳng thức xảy ra khi và chỉ khỉ x = y = 1008 

    Vậy \(P_{min}=10080\Leftrightarrow x=y=1008\)

      bởi Nhat nheo 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)