ADMICRO

Tìm giá trị lớn nhất của biểu thức: \(P=\frac{2x}{x^2+y^2+18}+\frac{y}{x+y+4z}-\frac{4(x+y)}{25z}\)

Hôm qua làm kiểm tra 1 tiết Toán, mình giải không biết đúng hay sai nữa!

Cho x, y, z là các số thực dương \(x+y+z^2=xy+5\) . Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{2x}{x^2+y^2+18}+\frac{y}{x+y+4z}-\frac{4(x+y)}{25z}\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Áp dụng bất đẳng thức AM – GM ta có:
    \(x^2+y^2\geq 2xy=2(x+y+z^2-5)\Leftrightarrow x^2+y^2+10\geq 2(x+y+z^2)\)
    \(\Leftrightarrow x^2+y^2+18\geq 2(x+y)+2(z^2+4)\geq 2(x+y)+8z=2(x+y+4z)\)
    Từ đó suy ra  \(\frac{2x}{x^2+y^2+18}\leq \frac{2x}{2(x+y+4z)}=\frac{x}{x+y+4z}\)
    Khi đó \(P\leq \frac{x}{x+y+4z}+\frac{y}{x+y+4z}-\frac{4(x+y)}{25z}\)
    \(=\frac{x+y}{x+y+4z}-\frac{4(x+y)}{25z}=\frac{\frac{x+y}{z}}{\frac{x+y}{z}+4}-\frac{4(x+y)}{25z}=f(t)=\frac{t}{t+4}-\frac{4t}{25}\)

    Với \(t=\frac{x+y}{z}>0\), xét hàm số \(f(t)=\frac{t}{t+4}-\frac{4t}{25}\), có
    \(f'(t)=\frac{4}{(t+4)^2}-\frac{4t}{25}\)
    \(f'(t)=0\Leftrightarrow \left\{\begin{matrix} t>0\\ (t+4)^2=25 \end{matrix}\right.\Leftrightarrow t=1\)
    Do đó suy ra \(f(t)\leq f(1)=\frac{1}{25}\Rightarrow P_{min}=\frac{1}{25}\)
    Dấu đẳng thức xảy ra khi và chỉ khi \(\left\{\begin{matrix} x+y=z;x=y\\ x+y+z^2=xy+5 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=y=1\\ z=2 \end{matrix}\right.\)
    Vậy giá trị lớn nhất của biểu thức P là \(\frac{1}{25}\)
     

      bởi Nguyễn Hạ Lan 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)