YOMEDIA
NONE

Cho \(z = a + bi\) là một số phức. Hãy tìm một phương trình bậc hai với hệ số thực nhận \(z\) và \( \overline{z}\) làm nghiệm.

Cho \(z = a + bi\) là một số phức. Hãy tìm một phương trình bậc hai với hệ số thực nhận \(z\) và \( \overline{z}\) làm nghiệm.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Cách 1:

    Một phương trình bậc hai nhận \(z\) và \( \overline{z}\) làm nghiệm là

    \(\begin{array}{l}
    \,\,\,\,\,\left( {x - z} \right)\left( {x - \overline z } \right) = 0\\
    \Leftrightarrow {x^2} - x.\overline z - x.z + z.\overline z = 0\\
    \Leftrightarrow {x^2} - \left( {z + \overline z } \right)x + z.\overline z = 0\\
    \Leftrightarrow {x^2} - \left( {a + bi + a - bi} \right) + \left( {a + bi} \right)\left( {a - bi} \right) = 0\\
    \Leftrightarrow {x^2} - 2ax + {a^2} + {b^2} = 0
    \end{array}\)

    Vậy một phương trình bậc hai cần tìm là \({x^2}-2ax + {a^2} + {b^2} = 0\)

    Cách 2:

    Ta có:

    \(\begin{array}{l}
    z + \overline z = a + bi + a - bi = 2a\\
    z.\overline z = \left( {a + bi} \right)\left( {a - bi} \right) = {a^2} + {b^2}
    \end{array}\)

    \(\Rightarrow z,\overline{z}\) là nghiệm của phương trình \({x^2}-2ax + {a^2} + {b^2} = 0\).

      bởi Thùy Trang 06/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON