YOMEDIA
NONE

Cho dãy số sau \(\left( {{u_n}} \right):\left\{ \begin{array}{l}{u_1} = 0\\{u_{n + 1}} = \dfrac{{2{u_n} + 3}}{{{u_n} + 4}}{\rm{ voi }}n \ge 1.\end{array} \right.\)

Lập dãy số \(\left( {{x_n}} \right)\) với \({x_n} = \dfrac{{{u_n} - 1}}{{{u_n} + 3}}.\) Chứng minh dãy số \(\left( {{x_n}} \right)\) là cấp số nhân.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Từ giả thiết có

    \({u_{n + 1}}\left( {{u_n} + 4} \right) = 2{u_n} + 3\) hay \({u_{n + 1}}.{u_n} + 4{u_{n + 1}} = 2{u_n} + 3{\rm{   }}\left( 1 \right)\)

    Lập tỉ số \(\dfrac{{{x_{n + 1}}}}{{{x_n}}} = \dfrac{{{u_{n + 1}} - 1}}{{{u_{n + 1}} + 3}}.\dfrac{{{u_n} + 3}}{{{u_n} - 1}}\) \( = \dfrac{{{u_{n + 1}}{u_n} + 3{u_{n + 1}} - {u_n} - 3}}{{{u_{n + 1}}{u_n} - {u_{n + 1}} + 3{u_n} - 3}}{\rm{  }}\left( 2 \right)\)

    Từ (1) suy ra \({u_{n + 1}}.{u_n} = 2{u_n} + 3 - 4{u_{n + 1,}}\) thay vào (2) ta được

    \(\dfrac{{{x_{n + 1}}}}{{{x_n}}}\)\( = \dfrac{{2{u_n} + 3 - 4{u_{n + 1}} + 3{u_{n + 1}} - {u_n} - 3}}{{2{u_n} + 3 - 4{u_{n + 1}} - {u_{n + 1}} + 3{u_n} - 3}}\) \( = \dfrac{{{u_n} - {u_{n + 1}}}}{{5\left( {{u_n} - {u_{n + 1}}} \right)}} = \dfrac{1}{5}.\)

    Vậy \({x_{n + 1}} = \dfrac{1}{5}{x_n},\) ta có cấp số nhân \(\left( {{x_n}} \right)\) với \(q = \dfrac{1}{5}\) và \({x_1} =  - \dfrac{1}{3}.\)

      bởi Bình Nguyen 18/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON