YOMEDIA
NONE

Chứng minh a+4/(a-b)(b+1)^2>=3

CMR: a + \(\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\) \(\ge\) 3 với mọi a,b >0.

Theo dõi Vi phạm
ATNETWORK

Trả lời (2)

  • Đặt \(A=x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\)

    \(=\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}+\left(y+1\right)-1\)

    Áp dụng BĐT Cô-si cho 2 số dương ta có :

    \(\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge2\sqrt{\dfrac{\left(x-y\right).4}{\left(x-y\right)\left(y+1\right)^2}}=\dfrac{4}{y+1}\)

    Xảy ra khi : \(\left(x-y\right)\left(y+1\right)=2\) ( do \(a,b>0\))

    \(\Rightarrow A\ge\dfrac{4}{y+1}+\left(y+1\right)-1\)

    Sử dụng Cô-Si lần nữa, ta có :

    \(\dfrac{4}{y+1}+\left(y+1\right)\ge2\sqrt{\dfrac{4}{y+1}\left(y+1\right)}=2.2=4\)

    Xảy ra khi \(\left(y+1\right)^2=4\Leftrightarrow y=1\)

    Từ đây ta có thể thấy : \(A\ge4-1=3\)

    Dấu "=" xảy ra khi \(\left(x-y\right)\cdot\left(y+1\right)=2\)\(y=1\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right..\)

    Bài này hồi lúc cũng không biết làm, h biết truyền lại cho bạn :D

      bởi Nguyen Lam 13/10/2018
    Like (0) Báo cáo sai phạm
  • YOMEDIA

    Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

  • 1. Ta có: \(a-b+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}\)

    \(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}+b\)(1)

    lại có: \(\dfrac{4}{b+1}+b+1\ge4\)

    \(\dfrac{4}{b+1}+b\ge3\)(2)

    Từ (1),(2) ta có:\(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)

    Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\\b+1=\dfrac{4}{b+1}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

    2. Ta có\(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3\)

    \(\Leftrightarrow2a^3+1\ge12ab-12b^2\)

    \(\Leftrightarrow2a^3+1-12ab+12b^2\ge0\)

    \(\Leftrightarrow2a^3-3a^2+1+3\left(a-2b\right)^2\ge0\)

    \(\Leftrightarrow\left(2a+1\right)\left(a-1\right)^2+3\left(a-2b\right)^2\ge0\)(luôn đúng)

    Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-1=0\\a-2b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{1}{2}\end{matrix}\right.\)

      bởi Truong Khanh Nhi 14/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON