AMBIENT
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu đi qua bốn điểm O, \(A\left( {1;0;0} \right),B\left( {0; - 2;0} \right),C\left( {0;0;4} \right)\)

    • A.  \({x^2} + {y^2} + {z^2} - x + 2y - 4z = 0\)
    • B.  \({x^2} + {y^2} + {z^2} +x - 2y + 4z = 0\)
    • C.  \({x^2} + {y^2} + {z^2} - 2x + 4y - 8z = 0\)
    • D.  \({x^2} + {y^2} + {z^2} +2x -4y +8z = 0\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Phương trình mặt cầu cần tìm có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\left( S \right)\)

    (S) đi qua bốn điểm O, A, B, C nên \(\left\{ \begin{array}{l} d = 0\\ 1 - 2a + d = 0\\ 4 + 4b + d = 0\\ 16 - 8c + d = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{1}{2}\\ b = - 1\\ c = 2\\ d = 0 \end{array} \right.\)

    Vậy phương trình \(\left( S \right):{x^2} + {y^2} + {z^2} - x + 2y - 4z = 0\).

    ADSENSE

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

YOMEDIA