AMBIENT
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz, tính khoảng cách d từ điểm A(1;-2;3) đến đường thẳng \(\Delta :\frac{{x - 10}}{5} = \frac{{y - 2}}{1} = \frac{{z + 2}}{1}.\)

    • A. \(d = \sqrt {\frac{{1361}}{{27}}}\)
    • B.  \(d = 7\)
    • C.  \(d =\frac{13}{2}\)
    • D.  \(d = \sqrt {\frac{{1358}}{{27}}}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Đường thẳng \(\Delta\) có VTCP \(\overrightarrow u = \left( {5;1;1} \right)\). Gọi điểm \(M\left( {10;2; - 2} \right) \in \Delta\).

    Ta có \(\overrightarrow {AM} = \left( {9;4; - 5} \right)\) suy ra \(\left[ {\overrightarrow {AM} ;\overrightarrow u } \right] = \left( {9; - 34; - 11} \right).\)

    \({d_{\left( {A,\Delta } \right)}} = \frac{{\left| {\left[ {\overrightarrow {AM} ;\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \sqrt {\frac{{1358}}{{27}}} .\)

    RANDOM

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AMBIENT
?>