• Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( \alpha \right):2x + my + 3z - 5 = 0\) và \(\left( \beta \right):nx - 8y - 6z + 2 = 0\left( {m,n \in \mathbb{R} } \right)\) . Tìm giá trị của m và n để hai mặt phẳng \((\alpha )\) và \((\beta )\) song song với nhau?

    • A.  \(n=m=-4\) 
    • B.  \(n=-4; m=4\)
    • C.  \(n=m=4\) 
    • D. \(n=4;m=-4\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: \(\left\{ \begin{array}{l} \overrightarrow {{n_{\left( \alpha \right)}}} = \left( {2;m;3} \right)\\ \overrightarrow {{n_{\left( \beta \right)}}} = \left( {n; - 8; - 6} \right) \end{array} \right.\)  

    Với n=0, hai mặt phẳng không song song.

    Với \(n\ne 0\) ta có: \(\left( \alpha \right)//\left( \beta \right)\) khi \(\frac{2}{n} = \frac{m}{{ - 8}} = \frac{3}{{ - 6}} \Rightarrow n = - 4;m = 4\).

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC