AMBIENT
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z + 1}}{2}\) và điểm \(I\left( {1;0;2} \right).\) Viết phương trình mặt cầu tâm I và tiếp xúc với đường thẳng d.

    • A. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 3\)
    • B.  \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 3\)
    • C.  \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 19\)
    • D. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 9\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(H\left( {1 + t;t; - 1 + 2t} \right) \in d\)

     Khi đó \(\overrightarrow {IH} = \left( {t;t;2t - 3} \right) \Rightarrow \overrightarrow {IH} .\overrightarrow {{u_d}} = 0 \Leftrightarrow t + t + 2\left( {2t - 3} \right) = 0\)

    \(\Leftrightarrow 6t - 6 = 0 \Leftrightarrow t = 1 \Rightarrow \overrightarrow {IH} \left( {1;1; - 1} \right) \Rightarrow IH = \sqrt 3 = R\)

    Do đó phương trình mặt cầu tâm I và tiếp xúc với đường thẳng d là \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 3.\)

    ADSENSE

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AMBIENT
?>