YOMEDIA
UREKA
  • Câu hỏi:

    Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0;x = \pi\), biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\left( {0 \le x \le \pi } \right)\) là một tam giác đều có cạnh là \(2\sqrt {\sin x}\).

    • A.  \(\sqrt 3\)
    • B.  \(\frac{\pi }{{\sqrt 3 }}\)
    • C. \(2\sqrt 3\)
    • D.  \(2\pi\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Bài này yêu cầu nắm vững công thức: \(V = \int\limits_a^b {S\left( x \right)dx}\)

    Gọi S(x) là diện tích của thiết diện đã cho thì:

                \(S\left( x \right) = {\left( {2\sqrt {\sin x} } \right)^2}.\frac{{\sqrt 3 }}{4} = \sqrt 3 \sin x\)

    Thể tích vật thể là:

                \(V = \int\limits_0^\pi {S\left( x \right)dx} = \int\limits_0^\pi {\sqrt 3 \sin xdx} = 2\sqrt 3\)

    Vậy đáp án đúng là C. 

    ADSENSE

Mã câu hỏi: 920

Loại bài: Bài tập

Chủ đề : Nguyên hàm, Tích phân và Ứng dụng

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 

 

 

CÂU HỎI KHÁC

ADMICRO
 

 

YOMEDIA
OFF