YOMEDIA
UREKA
  • Câu hỏi:

    Tính S là tổng các nghiệm phức của phương trình \({z^3} - 8 = 0.\)

    • A.  \(S=0\)
    • B.  \(S=i\)
    • C.  \(S=2i\sqrt3\)
    • D.  \(S=1\)

    Lời giải tham khảo:

    Đáp án đúng: A

    \(\begin{array}{*{20}{l}}
    \begin{array}{l}
    {z^3} - 8 = 0\\
     \Leftrightarrow (z - 2)({z^2} + 2z + 4) = 0\\
     \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
    {z = 2}\\
    {{z^2} + 2z + 4 = 0}
    \end{array}} \right.
    \end{array}\\
    { \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
    {z = 2}\\
    {z =  - 1 + i\sqrt 3 }\\
    {z =  - 1 - i\sqrt 3 }
    \end{array}} \right. \Rightarrow S = 0.}
    \end{array}\)

    ADSENSE

Mã câu hỏi: 1169

Loại bài: Bài tập

Chủ đề : Số phức

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 

 

 

CÂU HỎI KHÁC

ADMICRO
 

 

YOMEDIA
OFF