• Câu hỏi:

    Tìm tất cả các giá trị thực của tham số m để hàm số \(y = - 2{x^4} + \left( {m + 3} \right){x^2} + 5\) có duy nhất một điểm cực trị.

    • A. \(m = 0\)
    • B. \(m \le - 3\)
    • C. \(m <3\)
    • D. \(m >-3\)

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\begin{array}{l} y = - 2{x^4} + \left( {m + 3} \right){x^2} + 5\\ y' = - 8{x^3} + 2(m + 3)x = 2x( - 4{x^2} + m + 3)\\ y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ - 4{x^2} + m + 3 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ m + 3 = 4{x^2}(*) \end{array} \right. \end{array}\)

    Hàm số có đúng một cực trị khi và chỉ khi phương trình (*) vô nghiệm hoặc có nghiệm kép bằng 0.

    Điều này xảy ra khi:  \(m + 3 \le 0 \Leftrightarrow m \le - 3.\)

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC