YOMEDIA
UREKA
  • Câu hỏi:

    Tìm tất cả các giá trị nguyên của tham số thực m để hàm số \(y = \frac{1}{3}{x^3} + \frac{1}{2}m{x^2}\) có điểm cực đại x1 điểm cực tiểu x2 sao cho \(- 2 < {x_1} < - 1;\,\,1 < {x_2} < 2.\)

    • A. \(m>0\)
    • B. \(m<0\)
    • C. \(m=0\)
    • D. Không tồn tại m

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có: \(y' = {x^2} + mx\)

    \(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - m \end{array} \right.\)

    Vì phương trình y'=0 luôn có một nghiệm x=0 nên không tồn tại giá trị m thỏa yêu cầu bài toán.

    ADSENSE

Mã câu hỏi: 3107

Loại bài: Bài tập

Chủ đề : Đạo hàm và ứng dụng

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 

 

 

CÂU HỎI KHÁC

ADMICRO
 

 

YOMEDIA
OFF