YOMEDIA
  • Câu hỏi:

    Tìm tập hợp các giá trị của tham số thực m để hàm số \(y = \sqrt {{x^2} + 1} - mx - 1\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right).\)  

    • A. \(\left( { - \infty ;1} \right)\)  
    • B. \(\left[ {1; + \infty } \right)\)
    • C. \(\left[ { - 1;1} \right]\) 
    • D. \(\left( { - \infty ; - 1} \right]\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Hàm số \(y = \sqrt {{x^2} + 1} - mx - 1\)

    \(y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m\)

    Hàm số luôn đồng biến khi và chi khi \(m \le \frac{x}{{\sqrt {{x^2} + 1} }}.\)

    Xét hàm số \(f(x) = \frac{x}{{\sqrt {{x^2} + 1} }}\)

    \(f'(x) = \frac{1}{{\sqrt {{{({x^2} + 1)}^3}} }} > 0,\forall x\) 

    Suy ra f(x) luôn đồng biến trên \(\mathbb{R}\) 

    Mặt khác \(\mathop {\lim }\limits_{x \to - \infty } \frac{x}{{\sqrt {{x^2} + 1} }} = - 1\) 

    Vậy để hàm số đồng biến trên \(\mathbb{R}\) thì \(m \le - 1.\)

    RANDOM

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

YOMEDIA