YOMEDIA
NONE
  • Câu hỏi:

    Hình vuông nội tiếp elip (E) có phương trình \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) thì có diện tích bằng

    • A. \(\frac{{4{a^2}{b^2}}}{{{a^2} + {b^2}}}\)
    • B. \(\frac{{{a^2}{b^2}}}{{{)^2} + {b^2}}}\)
    • C. \({a^2} + {b^2}\)
    • D. \(\left| {ab} \right|\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Giả sử ABCD là hình vuông nội tiếp elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).

    Khi đó các đỉnh A, B, C, D phải nằm trên một trong hai đường phân giác của góc phần tư thứ nhất và thứ 2. Giả sử A(m, m) với m>0. Khi đó AB = 2m và \({S_{ABCD}} = 4{m^2}\). Mà \(A\left( {m,m} \right) \in \left( E \right)\) nên ta có \(\frac{{{m^2}}}{{{a^2}}} + \frac{{{m^2}}}{{{b^2}}} = 1\)

    \( \Rightarrow {m^2} = \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}} \Rightarrow {S_{ABCD}} = \frac{{4{a^2}{b^2}}}{{{a^2} + {b^2}}}\)

    ATNETWORK

Mã câu hỏi: 89832

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON