-
Câu hỏi:
Tìm m để phương trình \(\log _{\sqrt 3 }^2x - m{\log _{\sqrt 3 }}x + 1 = 0\) có nghiệm duy nhất.
- A. \(m=\pm1\)
- B. \(m=\pm3\)
- C. \(m=\pm 2\)
- D. Không tồn tại m
Đáp án đúng: A
Đặt \(t = {\log _{\sqrt 3 }}x.\)
Bất phương trình trở thành: \({t^2} - mt + 1 = 0.\)
Để phương trình \(\log _{\sqrt 3 }^2x - m{\log _{\sqrt 3 }}x + 1 = 0\) có nghiệm duy nhất thì phương trình \({t^2} - mt + 1 = 0\) phải có nghiệm kép.
Điều này xảy ra khi: \(\Delta = {m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l} m = 2\\ m = - 2 \end{array} \right.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ
- Giải phương trình log _3^2(x) - 2{log _{sqrt 3 }}x-2{log _1/3}x-3=0
- Tìm m để phương trình {x^4}-6{x^2}-{log _2}m = 0
- Giải bất phương trình {log_1/2}^2(x)+3{log_1/2}x+2
- Giải bất phương trình 4{log_25}x+{log_x}5>=3
- Giải phương trình {log_3}^2(x)-4{log_3}(3x)+7=0
- Giả sử p và q là các số thực dương sao cho {log _9}p = {log _{12}}q = {log_16}(p+q)
- Giải bất phương trình: {log _4}x.{log _2}(4x)+{log_sqrt2}(x^3/2)
- Tính P=x_1+x_2 với x_1,x_2 là các nghiệm của phương trình {log _2}^2(x) - 3{log _2}x + 2 = 0.
- Bất phương trình {log _4}x - {log _x}4
- Hỏi có bao nhiêu giá trị nguyên của m để bất phương trình {log _2}^2(x) + m{log _2}x - m >=0 nghiệm đúng với mọi giá trị của x>0