AMBIENT
  • Câu hỏi:

    Cho số phức z, biết \(z - \left( {2 + 3i} \right)\bar z = 1 - 9i\). Tìm phần ảo của số phức z.

    • A. -1
    • B. -2
    • C. 1
    • D. 2

    Lời giải tham khảo:

    Đáp án đúng: A

    Đặt \(z = a + bi\,\,\,(a,b \in \mathbb{R}),\) ta có:

    \(\begin{array}{l} z - \left( {2 + 3i} \right)\bar z = 1 - 9i \Leftrightarrow (a + bi) - (2 + 3i)(a - bi) = 1 - 9i\\ \Leftrightarrow a + bi - 2a + 2bi - 3ai - 3b = 1 - 9i\\ \Leftrightarrow - a - 3b - 1 + i(3b - 3a + 9) = 0\\ \Leftrightarrow \left\{ \begin{array}{l} - a - 3b - 1 = 0\\ (3b - 3a + 9) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 2\\ b = - 1 \end{array} \right. \end{array}\)

    Vậy phần ảo của số phức là -1.

    RANDOM

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

YOMEDIA