Bài 7: Tứ giác nội tiếp - Hình học 9

5 trắc nghiệm 8 bài tập SGK

Ta luôn vẽ được một đường tròn đi qua ba điểm bất kì, nhưng đối với một tứ giác thì không thể. Tuy nhiên có một số tứ giác lại vẽ được như vậy và những tứ giác có bốn đỉnh cùng thuộc một đường tròn thì sẽ được gọi là gì? Chúng có tính chất ra sao? Chúng ta cùng tìm hiểu bài Tứ giác nội tiếp

Tóm tắt lý thuyết

1. Khái niệm

Định nghĩa: Một tứ giác có bốn đỉnh cùng nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn (hay tứ giác nội tiếp)

Chẳng hạn, tứ giác \(ABCD\) có bốn đỉnh \(A,B,C,D\) cùng nằm trên một đường tròn nên \(ABCD\) được gọi là tứ giác nội tiếp.

2. Định lí: Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng 1800

\(ABCD\) là tứ giác nội tiếp nên ta có \(\widehat{A}+\widehat{C}=\widehat{B}+\widehat{D}=180^0\)

3. Định lí đảo: Nếu một tứ giác có tổng số đo hai góc đối nhau bằng 180thì tứ giác đó nội tiếp được đường tròn

Cụ thể ở hình trên, nếu có \(\widehat{A}+\widehat{C}=180^0\) hoặc \(\widehat{B}+\widehat{D}=180^0\) thì tứ giác \(ABCD\) nội tiếp được đường tròn.

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Tính số đo các góc của tứ giác \(ABCD\)

Hướng dẫn: 

Do \(ABCD\) là tứ giác nội tiếp nên ta có \(\widehat{A}+\widehat{C}=\widehat{B}+\widehat{D}=180^0\)

Vì \(\widehat{B}=85^0\) nên \(\widehat{D}=180^0-85^0=95^0\)

Ta có \(\widehat{A}+\widehat{C}=180^0\Leftrightarrow 2x+x=180^0\Leftrightarrow x=60^0\)

Từ đó suy ra \(\widehat{A}=2.60^0=120^0,\widehat{C}=60^0\)

Bài 2: Tính số đo các góc của tứ giác \(ABCD\), biết rằng \(\widehat{DCx}=130^0\)

Hướng dẫn: 

Ta có \(\widehat{DCB}=180^0-\widehat{DCx}=180^0-130^0=50^0\), suy ra \(\widehat{DAB}=180^0-\widehat{DCB}=180^0-50^0=130^0\)

Lại có \(\widehat{DCx}\) là góc ngoài của \(\bigtriangleup ECB\) nên \(\widehat{DCx}=\widehat{E}+\widehat{B}\Rightarrow \widehat{B}=\widehat{DCx}-\widehat{E}=130^0-30^0=100^0\)

Từ đó suy ra \(\widehat{ADC}=180^0-\widehat{ABC}=180^0-100^0=80^0\)

Bài 3: Tam giác \(ABC\) nội tiếp đường tròn \((O;R)\) có \(AB=8cm,AC=15cm\), đường cao \(AH=5cm\) (H nằm ngoài cạnh BC). Tính bán kính của đường tròn

Hướng dẫn: 

Tứ giác \(ABCD\) nội tiếp nên \(\widehat{ABH}=\widehat{ADC}\)

Xét hai tam giác vuông \(AHB\) và \(ACD\) có \(\widehat{ABH}=\widehat{ADC}\) nên \(\bigtriangleup AHB\sim\bigtriangleup ACD\) (g.g)

suy ra \(\frac{AH}{AB}=\frac{AC}{AD}\Rightarrow AD=\frac{AB.AC}{AH}=\frac{8.15}{5}=24\Rightarrow R=\frac{AD}{2}=12\)(cm)

2. Bài tập nâng cao

Bài 1: Dựa vào hình vẽ, tính các góc của tứ giác \(ABCD\)

Hướng dẫn:

Đặt \(\widehat{ABC}=x,\widehat{ADC}=y (x,y>0)\) thì ta có \(x+y=180\) (1)

Ta có \(\widehat{ABC}=40^0+\widehat{BAF}\) và \(\widehat{ADC}=30^0+\widehat{DAF}\)

suy ra \(\widehat{ABC}-\widehat{ADC}=10^0\) (vì \(\widehat{BAF}=\widehat{DAF}\)) hay \(x-y=10\)(2)

Giải hệ phương trình (1) và (2) suy ra \(x=95,y=85\) hay \(\widehat{ABC}=95^0,\widehat{ADC}=85^0\)

Lại có \(\widehat{DAB}=\widehat{F}+\widehat{ABF}=125^0\Rightarrow \widehat{BCD}=180^0-125^0=55^0\)

Bài 2: Cho tam giác \(ABC\) vuông tại \(A,(AB<AC)\) Lấy \(I\) thuộc cạnh \(AC\) sao cho \(\widehat{ABI}=\widehat{C}\). Đường tròn \((O)\) đường kính \(IC\) cắt \(BI\) ở \(D\). Chứng minh rằng:

a) \(CI\) là phân giác của \(\widehat{BCD}\)

b) \(DA\) là tiếp tuyến của \((O)\).

Hướng dẫn: 

a) Ta có \(\widehat{IDC}=90^0\) (góc nội tiếp chắn đường kính)

Nên \(\widehat{BAC}=\widehat{BDC}=90^0\) suy ra tứ giác \(ABCD\) nội tiếp 

do đó \(\widehat{ACD}=\widehat{ABD}\) mà theo đề bài \(\widehat{ABD}=\widehat{ACB}\) nên \(\widehat{ACD}=\widehat{ACB}\) hay \(CI\) là phân giác của \(\widehat{BCD}\) (đpcm)

b) Tứ giác \(ABCD\) nội tiếp nên \(\widehat{ADB}=\widehat{ACB}\) mà \(\widehat{ACD}=\widehat{ACB}\) nên \(\widehat{ADB}=\widehat{ACD}\)

Từ đó suy ra \(DA\) là tiếp tuyến của \((O)\).

-- Mod Toán Học 9 HỌC247