Đại số 9 Bài 5: Giải bài toán bằng cách lập hệ phương trình

5 trắc nghiệm 3 bài tập SGK 2 hỏi đáp

Hôm nay chúng ta sẽ đi sang bài học Giải bài toán bằng cách lập hệ phương trình, bài học này sẽ hướng dẫn các em giải quyết bài toán bằng cách lập hệ phương trình. Thay vì cho hệ thuần phương trình hai ẩn, đề bài thường cho các dạng toán như nước chảy, quãng đường vật di chuyển,... ta đưa nó về hệ rồi giải.

Tóm tắt lý thuyết

1. Phương pháp giải

Để giải bài toán bằng cách lập hệ phương trình, chúng ta làm theo các bước sau:

Bước 1: Lập hệ phương trình

Chọn ẩn và đặt điều kiện cho ẩn

Biểu đạt các đại lượng khác nhau theo ẩn

Dựa vào đề bài toán, lập phương trình theo dạng đã học

Bước 2: Giải hệ phương trình

Bước 3: So sánh kết quả tìm được và chọn nghiệm thích hợp

2. Các dạng toán cơ bản

Dạng toán chuyển động

Dạng toán kết hợp các đại lượng hình học

Dạng toán làm việc chung 1 tập thể, làm việc cá nhân

Dạng toán nước chảy

Dạng toán tìm số

Dạng toán kết hợp vật lý, hóa học

...

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Hình chữ nhật có diện tích là \(100cm\), nếu tăng chiều dài lên \(5cm\), giảm chiều rộng đi \(1cm\) thì diện tích không đổi. Tính chu vi hình chữ nhật ban đầu

Hướng dẫn: Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là \(a;b(a>b>0)\) theo đề, ta có:

\(\left\{\begin{matrix} ab=100\\ (a+5)(b-1)=100 \end{matrix}\right.\)

Giải hệ phương trình, ta được \(a=20cm; b=5cm\)

Vậy chu vi ban đầu của hình chữ nhật là \(50cm\)

Bài 2: Hai ô tô chạy từ A đến B dài 120km. Mỗi giờ ô tô thứ nhất hơn ô tô thứ 2 là 10km nên đến sớm hơn ô tô thứ hai là 24 phút. Tính vận tốc mỗi ô tô.

Hướng dẫn:

Gọi vận tốc của ô tô thứ nhất và thứ hai lần lượt là \(x;y(km/h)(x>y)\)

Theo đề, ta có:

24 phút \(=\frac{2}{5}\) giờ

\(\left\{\begin{matrix} x-y=10\\ \frac{120}{x}+\frac{2}{5}=\frac{120}{y} \end{matrix}\right.\)

Giải hệ ta tìm được \(x=60km/h,y=50km/h\)

Bài 3: Tìm một số có hai chữ số, biết rằng chữ số hàng đơn vị hơn chữ số hàng chục là 2, tích hai chữ số hơn tổng của chúng là 7

Hướng dẫn:

Gọi số đó là \(\bar{ab},(a,b\epsilon \mathbb{N})\)

Theo đề, ta có hệ phương trình: \(\left\{\begin{matrix} a+2=b\\ ab=a+b+7 \end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} a=3\\ b=5 \end{matrix}\right.\)

Vậy, số cần tìm là 35

2. Bài tập nâng cao

Bài 1: Tìm một số có ba chữ số, biết rằng khi chia số đó cho 11 ta được thương bằng tổng các chữ số của số bị chia

Hướng dẫn: Gọi số cần tìm là \(\bar{abc}(a,b,c>0; a,b,c \epsilon \begin{Bmatrix} 1;10 \end{Bmatrix})\)

Theo đề, ta có: \(100a+10b+c=11(a+b+c)\)

\(\Leftrightarrow 100a+10b+c=11a+11b+11c\)

\(\Leftrightarrow 89a=b+10c\)

Nếu \(a>1\Rightarrow 89a\) có ít nhất 3 chữ số, mà vế phải là một tổng có hai chữ số.

Vậy \(a=1\)\(\Rightarrow 89=10c+b\)

Mà \(10c+b\) chính là \(\bar{cb}\).

Vậy số cần tìm là 198

Bài 2: Đem một số có hai chữ số nhân với tổng của các chữ số với nhau thì được kết quả là 405. Nếu viết ngược lại bằng cách như vậy thì tích nhận được là 468. Tìm số đó

Hướng dẫn: 

Gọi số cần tìm là \(\bar{ab}(a;b\epsilon \mathbb{N})\)

Theo đề, ta có hệ phương trình \(\left\{\begin{matrix} (10a+b).(a+b)=405\\ (10b+a).(b+a)=486 \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 10a^2+11ab+b^2=405(1)\\ 10b^2+11ab+a^2=486(2) \end{matrix}\right.\)

Lấy (2) trừ cho (1) ta được: \(b^2-a^2=9\Leftrightarrow (b-a)(a+b)=9\)

Mà a, b là các số tự nhiên, dễ dàng suy ra \(a=4;b=5\)

Vậy số cần tìm là 45

Lời kết

Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Đại số 9 Bài 5 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Đại số 9 Bài 5 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Đại số 9 Bài 5 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9

-- Mod Toán Học 9 HỌC247