Đại số 9 Bài 4: Liên hệ giữa phép chia và phép khai phương

5 trắc nghiệm 10 bài tập SGK 2 hỏi đáp

Trong bài liên hệ giữa các phép chia căn thức này, các em sẽ được làm quen với các quy tắc khai phương một thương, chia hai căn bậc 2 để áp dụng vào rút gọn biểu thứctính toán các giá trị.

Tóm tắt lý thuyết

1. Định lí

Với số a không âm và số b dương, ta có: \(\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}\)

2. Áp dụng

1. Quy tắc khai phương một thương

Muốn khai phương một thương \(\frac{a}{b}\), trong đó số a không âm và số b dương, ta có thể lần lượt khai căn của số a và số b, rồi lấy kết quả thứ nhất chia cho kết quả thứ hai.

2. Quy tắc chia hai căn bậc hai

Muốn chia hai căn bậc hai của số a không âm và số b dương, ta có thể lấy số a chia cho số b rồi khai phương kết quả vừa tìm được.

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Thực hiện phép tính các giá trị sau:

\(\frac{\sqrt{52}}{\sqrt{117}}\) ; \(\frac{\sqrt{2}}{\sqrt{18}}\)

Hướng dẫn: Ta có: \(\frac{\sqrt{52}}{\sqrt{117}}=\sqrt{\frac{52}{117}}=\sqrt{\frac{4}{9}}=\frac{2}{3}\)

Tương tự, ta có \(\frac{\sqrt{2}}{\sqrt{18}}=\sqrt{\frac{2}{18}}=\sqrt{\frac{1}{9}}=\frac{1}{3}\)

Bài 2: Rút gọn biểu thức sau:

\(5xy.\sqrt{\frac{25x^2}{y^6}}\) với \(x> 0; y\neq 0\) ;  \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}\) với \(x\neq 0;y\neq 0\)

Hướng dẫn: \(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\frac{5|x|}{y^3}=\frac{25x^2y}{y^3}=\frac{25x^2}{y^2}\)

Tương tự, ta có: \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}=\frac{0,2x^3y^3.4}{x^2y^4}=\frac{0,8x}{y}\)

Bài 3: Giải phương trình:

\(\sqrt{2}x-\sqrt{50}=0\) ; \(\frac{x^2}{5}-\sqrt{20}=0\)

Hướng dẫn: \(\sqrt{2}x-\sqrt{50}=0\Leftrightarrow \sqrt{2}x=\sqrt{50}\Leftrightarrow x=\frac{\sqrt{50}}{\sqrt{2}}=5\)

Tương tự, ta có: \(\frac{x^2}{5}-\sqrt{20}=0\Leftrightarrow \frac{x^2}{5}=\sqrt{20}\Leftrightarrow x^2=5\sqrt{20}\Leftrightarrow x=\pm \sqrt{\sqrt{500}}\)

2. Bài tập nâng cao

Bài 1: Rút gọn biểu thức sau:

\(\sqrt{\frac{27(a-3)^2}{48}}\) với \(a>3\) ;   \((a-b).\sqrt{\frac{ab}{(a-b)^2}}\) với \(a

Hướng dẫn: \(\sqrt{\frac{27(a-3)^2}{48}}=\sqrt{\frac{9}{16}}|a-3|=\frac{3}{4}(a-3)\) (vì \(a>3\) nên \(a-3>0\))

\((a-b).\sqrt{\frac{ab}{(a-b)^2}}=(a-b)\frac{\sqrt{ab}}{|a-b|}=(a-b)\frac{\sqrt{ab}}{b-a}=-\sqrt{ab}\) (vì \(a

Bài 2: Giải phương trình: \(\sqrt{x^2-8x+32}=4\)

Hướng dẫn: Cách 1 các bạn có thể bình phương hai vế rồi giải phương trình bậc hai bình thường
Cách 2: Ta thấy rằng \(x^2-8x+32=x^2-8x+16+16=(x-4)^2+16\geq 16\)
nên \(\sqrt{x^2-8x+32}\geq \sqrt{16}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x^2-8x+16=0\Leftrightarrow x=4\)

Lời kết

Nội dung bài học đã giới thiệu đến các em Liên hệ giữa phép chia và phép khai phương​​. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Đại số 9 Bài 4 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Đại số 9 Bài 4 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Đại số 9 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9.

-- Mod Toán Học 9 HỌC247