Đại số 9 Bài 3: Liên hệ giữa phép nhân và phép khai phương

5 trắc nghiệm 11 bài tập SGK 2 hỏi đáp

Trong bài học này, các em sẽ được làm quen với việc khai phương một tích không âm, đưa các giá trị không âm vào trong hoặc ra ngoài dấu căn.

Tóm tắt lý thuyết

1. Định lí

Với hai số a và b không âm, ta có: \(\sqrt{a}.\sqrt{b}=\sqrt{ab}\)

Lưu ý: định lý trên có thể mở rộng đối với nhiều số không âm.

2. Áp dụng

1. Quy tắc khai phương một tích

Muốn khai phương một tích của các số không âm, ta có thể khai phương từng thừa số rồi nhân các kết quả lại với nhau.

2. Quy tắc nhân các căn bậc hai

Muốn nhân các căn bậc hai của các số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó.

Lưu ý: một cách tổng quát, với hai biểu thức A và B không âm, ta có: \(\sqrt{A}.\sqrt{B}=\sqrt{AB}\) 

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Áp dụng quy tắc khai phương một tích, hãy tính:
\(\sqrt{0,09.64}\) ; \(\sqrt{2^4.(-7)^2}\)

Hướng dẫn: Ta có \(\sqrt{0,09.64}=\sqrt{0,09}.\sqrt{64}=0,3.8=2,4\)

\(\sqrt{2^4.(-7)^2}=\sqrt{2^4}.\sqrt{(-7)^2}=4.7=28\)

Bài 2: Áp dụng quy tắc nhân, hãy tính:

\(\sqrt{7}.\sqrt{63}\) ; \(\sqrt{0,4}.\sqrt{6,4}\)

Hướng dẫn: Ta có: \(\sqrt{7}.\sqrt{63}=\sqrt{7.63}=\sqrt{7.7.3.3}=7.3=21\)

\(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{0,04.64}=\sqrt{0,04}.\sqrt{64}=0,2.8=1,6\)

Bài 3: Rút gọn biểu thức \(\sqrt{a^4(3-a)^2}\) với \(a\geq 3\)

Hướng dẫn: \(\sqrt{a^4(3-a)^2}=a^2.|3-a|=a^2(a-3)\) vì \(a\geq 3\)

2. Bài tập nâng cao

Bài 4: Khai phương tích 12.30.40

Hướng dẫn: \(\sqrt{12.30.40}=\sqrt{12.3.2.2.100}=6.2.10=120\)

Bài 5: Tính giá trị của \((2-\sqrt{3})(2+\sqrt{3})\)

Hướng dẫn:\((2-\sqrt{3})(2+\sqrt{3})=2^2-(\sqrt{3})^2=4-3=1\)
hoặc: \((2-\sqrt{3})(2+\sqrt{3})=2.2+2\sqrt{3}-2\sqrt{3}-\sqrt{3}.\sqrt{3}=1\)

Lời kết

Nội dung bài học đã giới thiệu đến các em Liên hệ giữa phép nhân và phép khai phương. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Đại số 9 Bài 3 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Đại số 9 Bài 3 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Đại số 9 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9.

-- Mod Toán Học 9 HỌC247