Bài 3: Góc nội tiếp - Hình học 9

5 trắc nghiệm 12 bài tập SGK

Đối với đường tròn, một góc có đỉnh nằm trên đường tròn được gọi là gì? Và các tính chất của nó như thế nào? Hãy cùng nhau tìm hiểu bài Góc nội tiếp

Tóm tắt lý thuyết

1. Định nghĩa

Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó. Cung nằm bên trong góc được gọi là cung bị chắn.

Góc \(\widehat{BAC}\) được gọi là góc nội tiếp, cung bị chắn là cung \(BC\)

2. Định lí

Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

VD: Ở hình trên, góc nội tiếp \(\widehat{BAC}\) bằng nửa số đo cung bị chắn \(BC\), tức là \(\widehat{BAC}=\frac {1}{2}\)sđ\(\stackrel\frown{BC}\)

3. Hệ quả

Trong một đường tròn:

a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau

b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau

c) Góc nội tiếp (nhỏ hơn hoặc bằng 900) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung

d) Góc nội tiếp chắn nửa đường tròngóc vuông

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Dựa vào hình vẽ, hãy tính số đo cung \(BD\) nhỏ

Hướng dẫn: \(\bigtriangleup OAD\) cân tại \(O\) nên \(\widehat{OAD}=\frac{180^0-150^0}{2}=15^0\), suy ra \(\widehat{BAD}=30^0+15^0=45^0\)

Mà \(\widehat{BAD}\) là góc nội tiếp nên sđ\(\stackrel\frown{BD}=2.\widehat{BAD}=2.45^0=90^0\)

Bài 2: Tính \(\widehat{MON}\) biết số đo cung nhỏ XY của đường tròn tâm B là 700

Hướng dẫn: Trong đường tròn \((B)\) ta có sđ\(\stackrel\frown{XY}=70^0\Rightarrow \widehat{XBY}=70^0\)

Trong đường tròn \((O)\) thì \(\widehat{MON}=2.\widehat{MBN}=2.70^0=140^0\)

Bài 3: Cho đường tròn \((O)\) và dây \(AB\). Vẽ \(OH\perp AB(H\in AB)\), \(OH\) cắt cung nhỏ \(AB\) tại \(N\). Biết rằng \(HN=5,AB=10\sqrt{5}\). Tính bán kính của đường tròn \((O)\)

Hướng dẫn: Vẽ đường kính \(NOM\). Dễ chứng minh \(H\) là trung điểm của \(AB\) nên \(AH=\frac{1}{2}.AB=\frac{1}{2}.10\sqrt{5}=5\sqrt{5}\)

Áp dụng hệ thức lượng cho tam giác vuông MAN với đường cao AH ta có \(MH.HN=AH^2\Rightarrow MH=\frac{AH^2}{NH}=\frac{(5\sqrt{5})^2}{5}=25\)

Khi đó \(MN=MH+HN=25+5=30\)

Bán kính của đường tròn \((O)\) là \(ON=\frac{MN}{2}=15\)

2. Bài tập nâng cao

Bài 1: Cho đường tròn \((O;R)\) đường kính \(BC\) cố định. Điểm \(A\) di động trên đường tròn khác \(B\) và \(C\). Vẽ đường kính \(AOD\). Xác định vị trí điểm \(A\) để diện tích \(\bigtriangleup ABC\) đạt giá trị lớn nhất, khi đó \(\widehat{ADC}=?\)

Hướng dẫn: Vẽ đường cao \(AH\) của \(\bigtriangleup ABC\).

\(\bigtriangleup AHO\) vuông tại \(H\) nên \(AH\leq AO\) (dấu bằng xảy ra khi \(H\equiv O\))

\(S_{ABC}=\frac{1}{2}AH.BC\leq \frac{1}{2}.AO.BC=\frac{1}{2}R.2R=R^2\)(dấu bằng xảy ra khi \(H\equiv O\))

Vậy diện tính tam giác \(ABC\) đạt giá trị lớn nhất khi \(H\equiv O\), khi đó \(A\) là điểm chính giữa \(\stackrel\frown{BC}\)

Suy ra \(\widehat{ADC}=45^0\)

Bài 2: Cho nửa đường tròn đường kính \(AB=2cm\), dây \(CD//AB (C\in\stackrel\frown{AD})\). Tính độ dài các cạnh của hình thang \(ABCD\) biết chu vi hình thang bằng \(5cm\)

Hướng dẫn: Ta có \(CD//AB\Rightarrow \stackrel\frown{AC}=\stackrel\frown{BD}\Rightarrow AC=BD\). Dễ chứng minh \(ABDC\) là hình thang cân (vì \(\widehat{CAB}=\widehat{DBA}\))

Đặt \(AC=BD=x\) \((x>0)\), chu vi hình thang bằng \(5cm\) nên \(AB+BD+CD+AC=5\Rightarrow CD=3-2x\)

Kẻ \(DN,CM\) vuông góc với \(AB\). Ta có \(NB=MA=\frac{AB-CD}{2}=\frac{2-(3-2x)}{2}=\frac{2x-1}{2}\)

\(\bigtriangleup DAB\) vuông tại \(D\) có \(DN\perp AB\) nên \(BD^2=BN.BA\Rightarrow x^2=\frac{2x-1}{2}.2\Rightarrow x^2-2x-1=0\Rightarrow x=1\)

Vậy \(AC=BD=1cm\) , do đó \(CD=3-2x=1 (cm)\)

-- Mod Toán Học 9 HỌC247