Bài 4: Phương trình tích - Luyện tập - Đại số 8

2 bài tập SGK 1 hỏi đáp

Trong bài học này chúng ta sẽ tìm hiểu về Phương trình tích cùng với các ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung bài học

Tóm tắt lý thuyết

1. Kiến thức cơ bản

Ta sử dụng, kết quả:

\(A(x).B(x) = 0 \Leftrightarrow \left[ \begin{array}{l}A(x) = 0\\B(x) = 0\end{array} \right.\)

Với phương trình

\(A(x).B(x)....M(x) = 0 \Leftrightarrow \left[ \begin{array}{l}A(x) = 0\\B(x) = 0\\......\\M(x) = 0\end{array} \right.\)

Lấy các nghiệm của các phương trình trên, ta được nghiệm của phương trình ban đầu.

Ví dụ 1: Giải các phương trình sau:

a. (x – 1) (3 – 2x) = 0

b. (5x – 3)(4x + 1)(x – 8)(x + 3) = 0

Giải

a. Phương trình tương đương với:

\(\left[ \begin{array}{l}x - 1 = 0\\3 - 2x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{3}{2}\end{array} \right.\)

Vậy phương trình có 2 nghiệm phân biệt là: \(x = 1,x = \frac{3}{2}\)

b. Phương trình tương đương với:

\(\left[ \begin{array}{l}5x - 3 = 0\\4x + 1 = 0\\x - 8 = 0\\x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{5}\\x =  - \frac{1}{4}\\x = 8\\x =  - 3\end{array} \right.\)

Vậy phương trình có 4 nghiệm \(x = \frac{3}{5},x =  - \frac{1}{4}\,,x = 8,x =  - 3\)


Ví dụ 2: Giải các phương trình sau:  

a. \(2x(x + 1) = {x^2} - 1\)

b. \(3{x^3} = {x^2} + 3x - 1\)

Giải

a.  Ta có thể lựa chọn một trong hai cách trình bày sau:

Cách 1: Biến đổi phương trình về dạng:

2x(x+1) =(x-1) (x+1)

\( \Leftrightarrow \) 2x (x+1) – (x – 1)(x + 1) = 0

\( \Leftrightarrow \)(x + 1)(2x – x + 1) = 0

\( \Leftrightarrow \)(x + 1)(x+1) = 0

\( \Leftrightarrow \) x + 1 = 0

\( \Leftrightarrow \) x = -1

Vậy phương trình có nghiệm duy nhất x = - 1

Cách 2: Biến đổi phương trình về dạng:

\(2{x^2} + 2x - {x^2} + 1 = 0\)

\( \Leftrightarrow {x^2} + 2x + 1 = 0\)

\( \Leftrightarrow {(x + 1)^2} = 0\)

\( \Leftrightarrow \) x + 1 = 0

\( \Leftrightarrow \) x = -1

Vậy phương trình có nghiệm duy nhất x = - 1

b.  Biến đổi phương trình về dạng:

\(3{x^3} - {x^2} - 3x + 1 = 0\)

\( \Leftrightarrow {x^2}(3x - 1) - (3x - 1) = 0\)

\( \Leftrightarrow (3x - 1)({x^2} - 1) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}3x - 1 = 0\\{x^2} - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{3}\\x =  \pm 1\end{array} \right.\)

Vậy phương trình có 3 nghiệm phân biệt là \(x =  - 1,x = 1,x = \frac{1}{3}\)


Ví dụ 3: Cho phương trình \((x + 1 - 3m)(3x - 5 + 2m) = 0\)

a. Tìm các giá trị của m sao cho một trong các nghiệm của phương trình là x = 1.

b. Với mỗi m vừa tìm được ở câu a, hãy giải phương trình đã cho.

Giải

a. Để phương trình nhận x = 1 làm một nghiệm điều kiện là:

(1+1 – 3m)(3.1 – 5 + 2m) = 0

\( \Leftrightarrow (2 - 3m)( - 2 + 2m) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}2 - 3m = 0\\ - 2 + 2m = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = 1\end{array} \right.\)

Vậy với \(m = \frac{2}{3}\) hoặc m = 1 thoả mãn điều kiện đầu bài.

b. Ta lần lượt thực hiện:

* Với \(m = \frac{2}{3}\) phương trình có dạng: \((x + 1 - 3.\frac{2}{3})(3x - 5 + 2.\frac{2}{3}) = 0\)

\( \Leftrightarrow (x - 1)(3x - \frac{{11}}{3}) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\3x - \frac{{11}}{3} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{{11}}{9}\end{array} \right.\)

Vậy với \(m = \frac{2}{3}\) phương trình có các nghiệm \(x = 1,x = \frac{{11}}{9}\)

* Với m = 1 phương trình có dạng: (x + 1 – 3.1)(3x – 5 + 2.1) = 0

\( \Leftrightarrow (x - 2)(3x - 3) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 2 = 0\\3x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 1\end{array} \right.\)

Vậy với m = 1 phương trình có các nghiệm x = 2, x = 1.

Bài tập minh họa

Bài 1: Cho phương trình \(2{x^3} + \,ax\, + 3 = 0\)

a. Biết rằng x = -1 là một nghiệm của phương trình (1), hãy xác định a.

b. Với a vừa tìm được ở câu a) hãy tìm các nghiệm còn lại của phương trình.

Giải

a. Vì x = -1 là một nghiệm của phương trình (1) nên ta được:

\(2{( - 1)^3} + a( - 1) + 3 = 0 \Leftrightarrow  - 2 - a + 3 = 0 \Leftrightarrow a = 1\)

Vậy với a = 1 phương trình (1) có một nghiệm là x = -1.

b. Với a = 1 phương trình (1) có dạng: \(2{x^3} + x + 3 = 0\)    (2)

Để giải phương trình (2) ta cần phân tích đa thức \(2{x^3} + x + 3\) thành nhân tử, để thực hiện công việc này chúng ta có thể lựa chọn một trong hai cách sau:

Cách 1: Thực hiện phép phân tích:

\(2{x^3} + x + 3 = 2{x^3} + 2 + x + 1\)

\( = 2({x^3} + 1) + (x + 1)\)

\( = 2(x + 1)({x^2} - x + 1) + (x + 1)\)

\( = (x + 1)(2{x^2} - 2x + 2 + 1)\)

\( = (x + 1)(2{x^2} - 2x + 3)\)

Cách 2: Vì x = -1 là nghiệm của phương trình nên đa thức \(2{x^3} + x + 3\) sẽ chia hết cho x + 1 (thực hiện phép chia đa thức \(2{x^3} + x + 3\) ra nháp), từ đó ta được: \(2{x^3} + x + 3\, = (x + 1)(2{x^2} - 2x + 3)\)

Khi đó, phương trình có dạng:

\((x + 1)(2{x^2} - 2x + 3) = 0 \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\2{x^2} - 2x + 3 = 0\,\,\,\,\,\,(2)\end{array} \right.\)

Giải (1), ta được x = -1

Giải (2), ta có nhận xét: \(2{x^3} - 2x + 3\, = 2({x^2} - x + 1) > 0\)

\( \Rightarrow \) Phương trình (2) vô nghiệm.

Vậy phương trình có nghiệm duy nhất x = -1


Bài 2: Giải phương trình \(2{x^3} + {x^2} - 5x + 2 = 0.\) Biết rằng phương trình có một nghiệm là x = 1.

Giải

Thực hiện phép chia đa thức \(2{x^3} + {x^2} - 5x + 2\) cho x – 1, ta được:

\(2{x^3} + {x^2} - 5x + 2 = (x - 1)(2{x^2} + 3x - 2) = (x - 1)(2{x^2} + 4x - x - 2)\)

\( = (x - 1){\rm{[}}2x(x + 2) - (x + 2){\rm{]}} = (x - 1)(2x - 1)(x + 2) = 0\)

Khi đó, phương trình có dạng: \((x - 1)(2x - 1)(x + 2) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\2x - 1 = 0\\x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{1}{2}\\x =  - 2\end{array} \right.\)

Vậy phương trình có ba nghiệm phân biệt \(x = 1,x = \frac{1}{2},x =  - 2\)


Bài 3: Giải các phương trình

a. \({x^2} - 9x + 20 = 0\)

b. \({x^3} - 4{x^2} + 5x = 0\)

Giải

a.  Biến đổi: \({x^2} - 9x + 20 = {x^2} - 4x - 5x + 20 = x(x - 4) - 5(x - 4) = (x - 4)(x - 5)\)

Khi đó, phương trình có dạng:

\((x - 4)(x - 5) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 4 = 0\\x - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 5\end{array} \right.\)

Vậy phương trình có hai nghiệm phân biệt x = 4, x = 5

b. Biến đổi: \({x^3} - 4{x^2} + 5x = x({x^2} - 4x + 5) = x{\rm{[}}{(x - 2)^2} + 1]\)

Khi đó phương trình có dạng: \(x{\rm{[}}{(x - 2)^2} + 1] = 0 \Leftrightarrow x = 0\)

Vậy phương trình có nghiệm x = 0 .

Lời kết

Trên đây là bài học Đại số 8 Chương 3 Bài 4 Phương trình tích và hướng dẫn Giải bài tập Đại số 8 Chương 3 Bài 4 sẽ giúp các em nắm được phương pháp giải các bài toán liên quan đến Phương trình tích. Để củng cố kiến thức các em có thể làm bài kiểm tra Trắc nghiệm Đại số 8 Chương 3 Bài 4. Các em cũng có thể nêu thắc mắc của mình ở phần Hỏi đáp Đại số 8 Chương 3 Bài 4 để được giải đáp. Cộng đồng Toán HOC247 chúc các em học thật tốt bài học này.

-- Mod Toán Học 8 HỌC247