Bài 4: Những hằng đẳng thức đáng nhớ (tiếp) - Đại số 8

4 bài tập SGK 3 hỏi đáp

Với bài học này, chúng ta sẽ làm quen với Những hằng đẳng thức đáng nhớ (tiếp). Đây là phần tiếp theo của bài học trước, ở bài học này chúng ta sẽ xét các hằng đẳng thức liên quan đến lập phương của một tổng hoặc một hiệu.

Tóm tắt lý thuyết

Kiến thức cần nhớ:

1. Lập phương của một tổng: \({(A + B)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

2. Lập phương của một hiệu: \({(A - B)^3} = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)  

Việc chứng minh các hằng đẳng thức này cũng dựa trên việc nhân đa thức với đa thức.

Chẳng hạn như ở hằng đẳng thức lâp phương của một tổng ta có thể chứng minh như sau :

\(\begin{array}{l} {(A + B)^3} = (A + B){(A + B)^2}\\ = (A + B)({A^2} + 2AB + {B^2})\\ = {A^3} + 2{A^2}B + A{B^2} + {A^2}B + 2A{B^2} + {B^3}\\ = {A^3} + 3{A^2}B + 3A{B^2} + {B^3} \end{array}\)

chúng ta cũng chứng minh tương tự cho hằng đẳng thức lập phương của một hiệu.

Bài tập minh họa

Bài 1. Tính nhanh:

a. \({97^3} + {3.97^2}.3 + {3.97.3^2} + {3^3}\)

b. \({16^3} - {3.16^2}.6 + {3.16.6^2} - {6^3}\) 

Hướng dẫn:

a.

\(\begin{array}{l} {97^3} + {3.97^2}.3 + {3.97.3^2} + {3^3}\\ = {\left( {97 + 3} \right)^3} = {100^3} = 1000000 \end{array}\)

b.

\(\begin{array}{l} {16^3} - {3.16^2}6 + {3.16.6^2} - {6^3}\\ = {\left( {16 - 6} \right)^3} = {10^3} = 1000 \end{array}\)

Bài 2. Khai triển biểu thức: \({\left( {x + y + 1} \right)^3}\)

Hướng dẫn:

\(\begin{array}{l} {\left( {x + y + 1} \right)^3}\\ = {\left[ {(x + y) + 1} \right]^3}\\ = {(x + y)^3} + 3{(x + y)^2} + 3(x + y) + 1\\ = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} + 3\left( {{x^2} + 2xy + {y^2}} \right) + 3x + 3y + 1\\ = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} + 3{x^2} + 6xy + 3{y^2} + 3x + 3y + 1 \end{array}\)

Bài 3. Chứng minh rằng: \({\left( {x + y + z} \right)^3} = {x^3} + {y^3} + {z^3} + 3(x + y)(y + z)(z + x)\)

Hướng dẫn:

Ta có thể biến đổi vế phải như sau

\(\begin{array}{l} {x^3} + {y^3} + {z^3} + 3(x + y)(y + z)(z + x)\\ = {x^3} + {y^3} + {z^3} + 3(xy + xz + {y^2} + yz)(z + x)\\ = {x^3} + {y^3} + {z^3} + 3(xyz + x{z^2} + {y^2}z + y{z^2} + {x^2}y + {x^2}z + {y^2}x + xyz)\\ = {x^3} + {y^3} + {z^3} + 6xyz + 3x{z^2} + 3{y^2}z + 3y{z^2} + 3{x^2}y + 3{x^2}z + 3x{y^2}\\ = \left( {{x^3} + 3{x^2}y + + 3x{y^2} + {y^3}} \right) + \left( {3{x^2}z + 6xyz + 3{y^2}z} \right) + \left( {3x{z^2} + 3y{z^2}} \right) + {z^3}\\ = {(x + y)^3} + 3({x^2} + 2xy + {y^2})z + 3(x + y){z^2} + {z^3}\\ = {(x + y)^3} + 3{(x + y)^2}z + 3(x + y){z^2} + {z^3}\\ = {\left( {x + y + z} \right)^3} \end{array}\)

Bên cạnh đó các em cũng có thể biến đổi từ vế trái thành vế phải.

Lời kết

Trên đây là tóm tắt lý thuyết và một số bài tập mẫu của bài Những hằng đẳng thức đáng nhớ (tiếp). Cộng đồng Toán HOC247 chúc các em học thật tốt bài học này.

-- Mod Toán Học 8 HỌC247