Số học 6 Bài 12: Phép chia phân số


Bài học sẽ giúp các em tìm hiểu các vấn đề liên quan đến Phép chia phân số, tính chất cùng các dạng toán liên quan và các ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng nắm được nội dung bài học.

Tóm tắt lý thuyết

1. Số nghịch đảo

\(- 8.\frac{1}{{ - 8}} = \,\,?\)

Ta nói \(\frac{1}{{ - 8}}\)là số nghịch đảo của -8, -8 cũng là số nghịch đảo của \(\frac{1}{{ - 8}}\) hai số -8 và \(\frac{1}{{ - 8}}\) là hai số nghịch đảo của nhau.

\(\Rightarrow \) Hai số gọi là nghịch đảo của nhau nếu tích của chúng bằng 1.

2. Phép chia phân số

Ta có quy tắc:

Muốn chia một phân số hay một số nguyên cho một phân số, ta nhân số bị chia với số nghịch đảo của số chia.

\(\frac{a}{b}\,\,:\,\,\frac{c}{d} = \frac{a}{b}.\frac{c}{d} = \frac{{a\,\,.\,\,d}}{{b\,.\,\,c}}\)                          \(a:\frac{c}{d} = a.\frac{d}{c} = \frac{{a.d}}{c}\,\,(c \ne 0)\)

Nhận xét: Muốn chia một phân số cho một số nguyên (khác 0), ta giữ nguyên tử của phân số và nhân mẫu với số nguyên.

\(\frac{a}{b}:c = \frac{a}{{b\,\,.\,\,\,c}}\)

Ví dụ 1: Tính các thương  sau đây rồi sắp xếp chúng theo thứ tự tăng dần:

\(\frac{3}{2}:\frac{9}{4};\,\,\,\frac{{48}}{{55}}:\frac{{12}}{{11}};\,\,\frac{7}{{10}}:\frac{7}{5};\,\,\frac{6}{7}:\frac{8}{7}\)

Giải

\(\begin{array}{l}\frac{3}{2}:\frac{9}{4} = \frac{2}{3}\,\,\\\frac{{48}}{{55}}:\frac{{12}}{{11}}\, = \frac{4}{5}\\\frac{7}{{10}}:\frac{7}{5} = \frac{1}{2}\\\frac{6}{7}:\frac{8}{7} = \frac{3}{4}\end{array}\)

Sắp xếp: \(\frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \frac{4}{5}\)


Ví dụ 2: Viết phân số \(\frac{{14}}{{15}}\) dưới dạng thương của hai phân số có tử và mẫu là các số nguyên dương có một chữ số.

Giải

\(\frac{{14}}{{15}} = \frac{2}{3}:\frac{5}{7} = \frac{5}{2}:\frac{3}{7} = \frac{7}{3}:\frac{5}{2} = \frac{7}{5}:\frac{3}{2}.\)


Ví dụ 3: Tính giá trị của biểu thức

\(A = \frac{{\frac{2}{3} + \frac{2}{5} - \frac{2}{9}}}{{\frac{4}{3} + \frac{4}{5} - \frac{4}{9}}}.\)

Giải

\(A = \frac{{\frac{2}{3} + \frac{2}{5} - \frac{2}{9}}}{{2.\left( {\frac{2}{3} + \frac{2}{5} - \frac{2}{9}} \right)}} = \frac{1}{2}\)

Bài tập minh họa

Bài 1: Cho hai phân số \(\frac{8}{{15}}\) và \(\frac{{18}}{{35}}.\) Tìm số lớn nhất sao cho khi chia mỗi phân số này cho số đó ta được kết quả là số nguyên.

Giải

Gọi số lớn nhất phải tìm là \(\frac{a}{b}\) (a và b nguyên tố cùng nhau)

Ta có \(\frac{8}{{15}}:\frac{a}{b} = \frac{{8b}}{{15a}}.\) Để \(\frac{{8b}}{{15a}}\) là số nguyên ta phải có \(8b\,\, \vdots \,\,15a\) suy ra \(8\, \vdots \,a\) và \(b\,\, \vdots \,\,15\)

Tương tự, từ \(\frac{{18}}{{35}}:\frac{a}{b} = \frac{{18b}}{{35a}}\) ta cũng suy ra \(18\,\, \vdots \,\,a\) và \(b\,\, \vdots \,\,35\)

Để \(\frac{a}{b}\) là số lớn nhất, ta phải có:

a = ƯCLN(8;18) = 2

b = BCNN(15; 35) = 105

Phân số phải tìm là \(\frac{2}{{105}}\)

Thử lại: \(\frac{8}{{15}}\,:\,\frac{2}{{105}}\,\, = 28;\,\,\frac{{18}}{{35}}\,:\,\frac{2}{{105}} = 27\)


Bài 2: Tìm hai số, biết rằng \(\frac{9}{{11}}\) của số này bằng \(\frac{6}{7}\) của số kia và tổng của hai số đó bằng 258.

Giải

Số thứ nhất bằng \(\frac{6}{7}:\frac{9}{{11}} = \frac{{22}}{{21}}\) số thứ hai, 258 chính là giá trị của \(\frac{{22}}{{21}} + 1 = \frac{{43}}{{21}}\) số thứ hai.

Số thứ hai là: \(258:\frac{{43}}{{21}} = 126\)

Số thứ nhất là: 258 – 126 = 132


Bài 3:  Tích của hai phân số là \(\frac{3}{7}\) nếu thêm vào thừa số thứ nhất 2 đơn vị thì tích là \(\frac{{13}}{{21}}.\) Tìm hai phân số đó.

Giải

Tích mới hơn tích cũ là: \(\frac{{13}}{{21}} - \frac{3}{7} = \frac{4}{{21}}\)

Tích mới hơn tích cũ 2 lần phân số thứ hai

 Vậy phân số thứ hai là \(\frac{4}{{21}}:2 = \frac{2}{{21}}\)

Phân số thứ nhất là \(\frac{3}{7}:\frac{2}{{21}} = \frac{9}{2}\)

Lời kết

Nội dung bài học đã giới thiệu đến các em phương pháp tìm Phép chia phân số và các dạng toán liên quan. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Số học 6 Bài 12 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Số học 6 Bài 12 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Số học 6 Bài 12 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 6.

-- Mod Toán Học 6 HỌC247