Số học 6 Bài 11: Tính chất cơ bản của phép nhân phân số

11 bài tập SGK 1 hỏi đáp

Bài học sẽ giúp các em tìm hiểu các vấn đề liên quan đến Tính chất cơ bản của phép nhân phân số, tính chất chia hết cùng các dạng toán liên quan và các ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng nắm được nội dung bài học.

Tóm tắt lý thuyết

1. Các tính chất

Tương tự phép nhân số nguyên, phép nhân phân số có các tính chất cơ bản sau:

a. Tính chất giao hoán: \(\frac{a}{b}.\frac{c}{d} = \frac{c}{d}.\frac{a}{b}\)

b. Tính chất kết hợp: \(\left( {\frac{a}{b}.\frac{c}{d}} \right).\frac{p}{q} = \frac{a}{b}.\left( {\frac{c}{d}.\frac{p}{q}} \right)\)

c. Nhân với số 1: \(\frac{a}{b}.1 = 1.\frac{a}{b} = \frac{a}{b}\)

d. Tính chất phân phối của phép nhân đối với phép cộng:

\(\frac{a}{b}.\left( {\frac{c}{d} + \frac{p}{q}} \right) = \frac{a}{b}.\frac{c}{d} + \frac{a}{b}.\frac{p}{q}\)

2. Áp dụng

Do các tính chất giao hoán và kết hợp của phép nhân, khi nhân nhiều phân số, ta có thể đổi chỗ hoặc nhóm các phân số lại theo bất cứ cách nào sao cho việc tính toán được thuận tiện.

Ví dụ 1: Tính tích \(M = \frac{{ - 7}}{{15}}.\frac{5}{8}.\frac{{15}}{{ - 7}}.( - 16)\)

Giải

Ta có \(M = \frac{{ - 7}}{{15}}.\frac{{15}}{{ - 7}}.\frac{5}{8}.( - 16)\) (Tính chất giao hoán)

\( = \left( {\frac{{ - 7}}{{15}}.\frac{{15}}{{ - 7}}} \right).\left( {\frac{5}{8}.( - 16)} \right)\)   (tính chất kết hợp)

\( = 1.( - 10) =  - 10\) nhân với số 1


Ví dụ 2: Tính nhanh giá trị các biểu thức

\(A = \frac{6}{7} + \frac{1}{7}.\frac{2}{7} + \frac{1}{7}.\frac{5}{7}\)

\(B = \frac{4}{9}.\frac{{13}}{3} - \frac{4}{3}.\frac{{40}}{9}\)

Giải

\(A = \frac{1}{7}.\left( {6 + \frac{2}{7} + \frac{5}{7}} \right) = \frac{1}{7}.7 = 1\)

\(B = \frac{4}{9}.\left( {\frac{{13}}{3} - \frac{{40}}{3}} \right) = \frac{4}{9}.( - 9) =  - 4\)


Ví dụ 3: Áp dụng các tính chất của phép nhân phân số để tính nhanh.

\(M = \frac{8}{3}.\frac{2}{5}.\frac{3}{8}.10.\frac{{19}}{{92}}\)

\(N = \frac{5}{7}.\frac{5}{{11}} + \frac{5}{7}.\frac{2}{{11}} - \frac{5}{7}.\frac{{14}}{{11}}\)

\(Q = \left( {\frac{1}{{99}} + \frac{{12}}{{999}} - \frac{{123}}{{9999}}} \right).\left( {\frac{1}{2} - \frac{1}{3} - \frac{1}{6}} \right)\)

Giải

\(M = \left( {\frac{8}{3}.\frac{3}{8}} \right).\left( {\frac{2}{5}.10} \right).\frac{{19}}{{92}} = 1.4.\frac{{19}}{{92}} = \frac{{19}}{{23}}\)

\(N = \frac{5}{7}.\left( {\frac{5}{{11}} + \frac{2}{{11}} - \frac{{14}}{{11}}} \right) = \frac{5}{7}.\frac{{ - 7}}{{11}} = \frac{{ - 5}}{{11}}\)

\(Q = \left( {\frac{1}{{99}} + \frac{{12}}{{999}} - \frac{{123}}{{9999}}} \right).0 = 0\)

Bài tập minh họa

Bài 1: Tính giá trị biểu thức.

\(A = \frac{{{1^2}}}{{1.2}}.\frac{{{2^2}}}{{2.3}}.\frac{{{3^2}}}{{3.4}}.\frac{{{4^2}}}{{4.5}}\)

\(B = \frac{{{2^2}}}{{1.3}}.\frac{{{3^2}}}{{2.4}}.\frac{{{4^2}}}{{3.5}}.\frac{{{5^2}}}{{4.6}}.\)

Giải

\(A = \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5} = \frac{1}{5}\)

\(B = \frac{{2\,\,.\,\,3\,\,.\,\,4\,\,.\,\,5}}{{1\,\,.\,\,2\,\,.\,\,3\,\,.\,\,4}}\,\,.\,\,\frac{{2\,\,.\,\,3\,\,.\,\,4\,\,.\,\,5}}{{3\,\,.\,\,4\,\,.\,\,5\,\,.\,\,6}} = \frac{5}{3}\)


Bài 2: Tính nhanh

\(M = \frac{2}{{3\,\,.\,\,5}} + \frac{2}{{5\,\,.\,\,7}} + \frac{2}{{7\,\,.\,\,9}} + ... + \frac{2}{{97.99}}\)

Giải

\(M = \left( {\frac{1}{3} - \frac{1}{5}} \right) + \left( {\frac{1}{5} - \frac{1}{7}} \right) + \left( {\frac{1}{7} - \frac{1}{9}} \right) + ... + \left( {\frac{1}{{97}} -  \frac{1}{{99}}} \right)\)

\( = \frac{1}{3} - \frac{1}{{99}}\)

\( = \frac{{32}}{{99}}\)


Bài 3: Tính giá trị của  biểu thức

\(M = \frac{1}{{1.2.3}} + \frac{1}{{2.3.4}} + \frac{1}{{3.4.5}} + .... + \frac{1}{{10.11.12}}\)

Giải

Ta có nhận xét: \(\frac{1}{{1.2}} - \frac{1}{{2.3}} = \frac{{3 - 1}}{{1.2.3}} = \frac{2}{{1.2.3}}\)

\(\frac{1}{{2.3}} - \frac{1}{{3.4}} = \frac{{4 - 2}}{{2.3.4}} = \frac{2}{{2.3.4}};...\)

Suy ra \(\frac{1}{{1.2.3}} = \frac{1}{2}\left( {\frac{1}{{1.2}} - \frac{1}{{2.3}}} \right)\)

\(\frac{1}{{2.3.4}} = \frac{1}{2}\left( {\frac{1}{{2.3}} - \frac{1}{{3.4}}} \right);...\)

Do đó:

\(M = \frac{1}{2}\left( {\frac{1}{{1.2}} - \frac{1}{{2.3}} + \frac{1}{{2.3}} - \frac{1}{{3.4}} + .... + \frac{1}{{10.11}} - \frac{1}{{11.12}}} \right)\)

\( = \frac{1}{2}\left( {\frac{1}{{1.2}} - \frac{1}{{11.12}}} \right) = \frac{1}{2}\left( {\frac{1}{2} - \frac{1}{{11.12}}} \right)\)

\( = \frac{1}{2}.\frac{{65}}{{132}} = \frac{{65}}{{264}}\)

Lời kết

Nội dung bài học đã giới thiệu đến các em phương pháp tìm Tính chất cơ bản của phép nhân phân số và các dạng toán liên quan. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Số học 6 Bài 11 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Số học 6 Bài 11 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Số học 6 Bài 11 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 6.

-- Mod Toán Học 6 HỌC247