Số học 6 Bài 10: Phép nhân phân số


Bài học sẽ giúp các em đi dâu tìm hiểu các vấn đề liên quan đến Phép nhân phân số, các dạng toán liên quan và các ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng nắm được nội dung bài học.

Tóm tắt lý thuyết

1. Quy tắc

Muốn nhân hai phân số, ta nhân các tử với nhau và nhân các mẫu với nhau.

\(\frac{a}{b}.\frac{c}{d} = \frac{{a\,\,.\,\,c}}{{b\,\,.\,\,d}}\)

Ví dụ 1: Tính \(\frac{{ - 3}}{7}.\frac{2}{{ - 5}}\) .

Giải

 \(\frac{{ - 3}}{7}.\frac{2}{{ - 5}} = \frac{{( - 3).2}}{{7.( - 5)}} = \frac{{ - 6}}{{ - 35}} = \frac{6}{{35}}\)

2. Nhận xét

Từ các phép nhân: \(( - 2).\frac{1}{5} = \frac{{ - 2}}{1}.\frac{1}{5} = \frac{{( - 2).1}}{{1.5}} = \frac{{ - 2}}{5}\,\,\left( { = \frac{{( - 2).1}}{5}} \right)\)

\(\frac{{ - 3}}{{13}}.( - 4) = \frac{{ - 3}}{{13}}.\frac{{ - 4}}{1} = \frac{{( - 3).( - 4)}}{{13.1}} = \frac{{12}}{{13}}\,\,\left( { = \frac{{( - 3).( - 4)}}{{13}}} \right)\), ta có nhận xét:

Muốn nhân một số nguyên với một phân số (hoặc một phân số với một số nguyên), ta nhân số nguyên với tử của phân số và giữ nguyên mẫu.


Ví dụ 2: Tính

a. \(\frac{2}{3} + \frac{1}{5}.\frac{{10}}{7}\)                            b. \(\frac{7}{{12}} - \frac{{27}}{7}.\frac{1}{{18}}\)

c. \(\left( {\frac{{23}}{{41}} - \frac{{15}}{{82}}} \right).\frac{{41}}{{25}}\)                 d. \(\left( {\frac{4}{5} + \frac{1}{2}} \right).\left( {\frac{3}{{13}} - \frac{8}{{13}}} \right)\)

Giải

a. \(\frac{2}{3} + \frac{1}{5}.\frac{{10}}{7} = \frac{2}{3} + \frac{2}{7} = \frac{{14}}{{21}} + \frac{6}{{21}} = \frac{{20}}{{21}}\)                                   

b. \(\frac{7}{{12}} - \frac{{27}}{7}.\frac{1}{{18}} = \frac{7}{{12}} - \frac{3}{{14}} = \frac{{49}}{{84}} - \frac{{18}}{{84}} = \frac{{31}}{{84}}\)

c. \(\left( {\frac{{23}}{{41}} - \frac{{15}}{{82}}} \right).\frac{{41}}{{25}} = \left( {\frac{{46}}{{82}} - \frac{{15}}{{82}}} \right).\frac{{41}}{{25}} = \frac{{31}}{{82}}.\frac{{41}}{{25}} = \frac{{31}}{{50}}\)                

d. \(\left( {\frac{4}{5} + \frac{1}{2}} \right).\left( {\frac{3}{{13}} - \frac{8}{{13}}} \right) = \left( {\frac{8}{{10}} + \frac{5}{{10}}} \right).\left( {\frac{{ - 5}}{{13}}} \right) = \frac{{13}}{{10}}.\frac{{ - 5}}{{13}} = \frac{{ - 1}}{2}\)


Ví dụ 3:

a. Cho hai phân số \(\frac{1}{n}\) và \(\frac{1}{{n + 1}}\,\,(n \in \mathbb{Z},\,\,n > 0).\) Chứng tỏ rằng tích của hai phân số này bằng hiệu của chúng.

b. Áp dụng kết quả trên để tính giá trị các biểu thức sau:

\(A = \frac{1}{2}.\frac{1}{3} + \frac{1}{3}.\frac{1}{4} + \frac{1}{4}.\frac{1}{5} + \frac{1}{5}.\frac{1}{6} + \frac{1}{6}.\frac{1}{7} + \frac{1}{7}.\frac{1}{8} + \frac{1}{8}.\frac{1}{9}\)

\(B = \frac{1}{{30}} + \frac{1}{{42}} + \frac{1}{{56}} + \frac{1}{{72}} + \frac{1}{{90}} + \frac{1}{{110}} + \frac{1}{{132}}\)

Giải

a. \(\frac{1}{n}.\frac{1}{{n + 1}}\,\, = \frac{1}{{n(n + 1)}};\,\,\,\,\frac{1}{n} - \frac{1}{{n + 1}}\,\, = \frac{{n + 1 - n}}{{n(n + 1)}} = \frac{1}{{n(n + 1)}}\)

b. Áp dụng

\(A = \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + \left( {\frac{1}{4} - \frac{1}{5}} \right) + \left( {\frac{1}{5} - \frac{1}{6}} \right) + \left( {\frac{1}{6} - \frac{1}{7}} \right) + \left( {\frac{1}{7} - \frac{1}{8}} \right) + \left( {\frac{1}{8} - \frac{1}{9}} \right)\)

\( = \frac{1}{2} - \frac{1}{9} = \frac{7}{{18}}\)

\(B = \frac{1}{{5.6}} + \frac{1}{{6.7}} + \frac{1}{{7.8}} + \frac{1}{{8.9}} + \frac{1}{{9.10}} + \frac{1}{{10.11}} + \frac{1}{{11.12}}\)

\( = \left( {\frac{1}{5} - \frac{1}{6}} \right) + \left( {\frac{1}{6} - \frac{1}{7}} \right) + \left( {\frac{1}{7} - \frac{1}{8}} \right) + \left( {\frac{1}{8} - \frac{1}{9}} \right) + \left( {\frac{1}{9} - \frac{1}{{10}}} \right) + \left( {\frac{1}{{10}} - \frac{1}{{11}}} \right) + \left( {\frac{1}{{11}} - \frac{1}{{12}}} \right)\)

\( = \frac{1}{5} - \frac{1}{{12}} = \frac{7}{{60}}\)

Bài tập minh họa

Bài 1: Cho phân số \(\frac{a}{b}\) và phân số \(\frac{a}{c}\) có \(b{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a\,\,(a,\,b,\,c\, \in \mathbb{Z},\,b \ne 0,\,c\, \ne 0).\) Chứng tỏ rằng tích của hai phân số này bằng tổng của chúng. Thử lại với a = 8, b = -3.

Giải

Ta có \(\frac{a}{b}.\frac{a}{c} = \frac{{{a^2}}}{{bc}}\) (1)

\(\frac{a}{b} + \frac{a}{c} = \frac{{ac + ab}}{{bc}} = \frac{{a(c + b)}}{{bc}} = \frac{{a.a}}{{bc}} = \frac{{{a^2}}}{{bc}}\) (Vì c + b = a)  (2)

Từ (1) và (2): \(\frac{a}{b}.\frac{a}{c} = \frac{a}{b} + \frac{a}{c}\) với b + c = a. \(a,\,b,\,c\, \in \mathbb{Z},\,b \ne 0,\,c\, \ne 0\)

Nếu a = 8, b = -3 thì c = a – b = 8 – (-3) = 11. Ta có:

\(\frac{8}{{ - 3}}.\frac{8}{{11}} = \frac{{64}}{{ - 33}}\) và \(\frac{8}{{ - 3}} + \frac{8}{{11}} = \frac{{8.11 + 8.( - 3)}}{{ - 33}} = \frac{{64}}{{ - 33}}\)


Bài 2: Tìm phân số tối giản \(\frac{a}{b}\) sao cho phân số \(\frac{a}{{b - a}}\) bằng 8 lần phân số \(\frac{a}{b}\).

Giải

Từ \(\frac{a}{{b - a}} = \frac{a}{b}.8\) suy ra

\(\begin{array}{l}ab = 8a(b - a)\\ab = 8ab - 8{a^2}\\8{a^2} = 7ab\\8a = 7b\,\,\,hay\,\,\frac{a}{b} = \frac{7}{8}\end{array}\)


Bài 3: Tìm số nguyên dương nhỏ nhất để khi nhân nó với mỗi một trong các phân số tối giản \(\frac{3}{4},\frac{{ - 5}}{{11}},\frac{7}{{12}}\) đều được tích là những số nguyên.

Giải

Gọi a là số nguyên dương cần tìm

Để \(\frac{{3a}}{4},\frac{{ - 5a}}{{11}},\frac{{7a}}{{12}}\)là những số nguyên thì a phải chia hết cho 4, cho 11, cho 12, a là số nguyên dương nhỏ nhất nên a là BCNN(4,11,12)=132.

Lời kết

Nội dung bài học đã giới thiệu đến các em phương pháp tìm Phép nhân phân số và các dạng toán liên quan. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Số học 6 Bài 10 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Số học 6 Bài 10 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Số học 6 Bài 10 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 6.

-- Mod Toán Học 6 HỌC247