Bài 1: Tập hợp và phần tử của tập hợp - Số học 6

5 trắc nghiệm 5 bài tập SGK 5 hỏi đáp

Để làm quen với kiến thức toán lớp 6 đầu tiên ta sẽ ôn tập và hệ thống hóa nội dung về số tự nhiên. Đầu tiên ta sẽ làm quen với tập hợpcác kí hiệu tập hợp qua bài học đầu tiên là Tập hợp và Phần tử của tập hợp.

Tóm tắt lý thuyết

1. Định nghĩa: 

Tập hợp một hay nhiều đối tượng có tính chất đặc trưng giống nhau. Những đối tượng gọi là phần tử.

VD:

- Tập hợp các em học sinh lớp 61

- Tập hợp các số tự nhiên là bội số của 10 và nhỏ hơn 100

- Tập hợp các chữ cái a, b, c, d

Hình minh hoạ tập hợp

H1: Hình minh hoạ tập hợp

2. Cách viết các ký hiệu:

- Tên tập hợp được đặt bằng chữ cái in hoa.

VD: 
A= { 0; 1; 2; 3 }

B= { a; b; c; d }
C= { x \(\in\) N/ x<10}

- Các phần tử được viết trong 2 dấu {}

- Giữa các phần tử được ngăn cách bới dấu “,” hoặc dấu “;”

- Thứ tự các phần tử liệt kê tùy ý

- Mỗi phần tử được liệt kê một lần

- Có hai cách để viết 1 tập hợp là: Liệt kê các phần tử của tập hợp hay chỉ ra tính chất đặc trưng của các phần tử

VD: Viết tập hợp A các số tự nhiên chia 2 dư 1 và nhỏ hơn < 10

A={1,3,5,6,7}

A= {x  \(\in\) N/ x=2k+1; x<10}

Ký hiệu: 

a \(\in\) A đọc a là phần tử của tập hợp A hay phần tử a thuộc tập hợp A.

\(\notin\) A đọc a không là phần tử của tập hợp A hay phần tử a không thuộc tập hợp A.

- Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào là tập hợp rỗng kí hiệu \(\emptyset\).

- Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. Kí hiệu: A \(\subset\) B đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A.

- Mỗi tập hợp đều là tập hợp con của chính nó và tập hợp rỗng là tập hợp con của mọi tập hợp.

H2: Minh họa tập hợp A là tập hợp con của tập hợp B

* Cách tìm số tập hợp con của một tập hợp: Nếu A có n phần tử thì số tập hợp con của tập hợp A là 2n.

Bài tập minh họa

Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh”

a. Hãy liệt kê các phần tử của tập hợp A.

b.  Điền kí hiệu thích hợp vào ô vuông

b   [ ]     A;    c   [ ]   A;      h   [ ]    A

Hướng dẫn

a/  A = {a, c, h, i, m, n, ô, p, t}

b/ b \(\notin\) A ; c \(\in\) A; h\(\in\) A

Lưu ý HS: Bài toán trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã cho.

Bài 2: Cho tập hợp các chữ cái X = {A, C, O}

a/ Tìm cụm chữ tạo thành từ các chữ của tập hợp X.

b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X.

Hướng dẫn

a/ Chẳng hạn cụm từ “CA CAO” 

b/ X = {x: x-chữ cái trong cụm chữ “CA CAO”}

 

Bài 3: Cho tập hợp A = {1; 2;3;x; a; b}

a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử.

b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử.

c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không?

Hướng dẫn

a/ {1} { 2} { a } { b} ….

b/ {1; 2} {1; a} {1; b} {2; a} {2; b} { a; b} ……

c/ Tập hợp B không phải là tập hợp con của tập hợp A bởi vì tập hợp B có phần tử c nhưng phần tử c lại không thuộc tập hợp A

Bài 4: Cho tập hợp B = {a, b, c}. Hỏi tập hợp B có tất cả bao nhiêu tập hợp con?

Hướng dẫn

- Tập hợp con của B không có phần từ nào là 1: \(\emptyset\)

- Các tập hợp con của B có một phần tử là 3: {a}, {b}, {c} 

- Các tập hợp con của B có hai phần tử là 3: {a,b}, {a,c}, {b,c} 

- Tập hợp con của B có 3 phần tử chính là 1:  {a, b, c}

Vậy tập hợp A có tất cả là 1+3+3+1 = 8 tập hợp con = 23

Ghi chú: Một tập hợp A bất kỳ luôn có hai tập hợp con đặc biệt là tập hợp rỗng và chính tập hợp A. Nếu A có n phần tử thì số tập hợp con của tập hợp A là 2n.

Lời kết

Qua bài học này các em hiểu khái niệm tập hợp, cách biểu diễn, ký hiệu tập hợp và các khái niệm về tập hợp rỗng, tập hợp con. Các em làm phần trắc nghiệm tập hợp để hiểu rõ và nẵm vững bài học nhé. Các bài tập SGK bài 1 cũng được hướng dẫn giải các em có thể tham khảo và nếu có gì cần hỏi về tập hợp các em có thể đặt câu hỏi ở phần hỏi đáp cộng đồng Toán HỌC247 sẽ giải đáp cho các em.

-- Mod Toán Học 6 HỌC247