Bài 3: Phép chia số phức - Giải tích 12

5 trắc nghiệm 4 bài tập SGK

Nội dung bài học tiếp tục giới thiệu đến các em một phép toán tiếp theo trên tập số phức đó là phép chia hai số phức. Cách làm cụ thể và những ví dụ minh họa sẽ được giới thiệu thông qua bài học này.

Tóm tắt lý thuyết

1. Phép chia hai số phức

Cho hai số phức \({z_1} = a + bi,\,\,{z_2} = c + di\,(a,b,c,d \in \mathbb{R}),\) ta có:

\(\frac{{c + di}}{{a + bi}} = \frac{{\left( {c + di} \right)(a - bi)}}{{{a^2} + {b^2}}} = \frac{{ac + bd}}{{{a^2} + {b^2}}} + \frac{{ad - bc}}{{{a^2} + {b^2}}}i\)

(Nhân cả tử và mẫu với \(a - bi\)(số phức liên hợp của mẫu)).

2. Chú ý

Với số phức \(z\ne0\) ta có:

  • Số phức nghịch đảo của \(z\): \({z^{ - 1}} = \frac{1}{{{{\left| z \right|}^2}}}\overline z .\)
  • Thương của \(z'\) chia cho \(z\): \(\frac{{z'}}{z} = z'.{z^{ - 1}} = \frac{{z'.\overline z }}{{{{\left| z \right|}^2}}} = \frac{{z'.\overline z }}{{z.\overline z }}.\)

Bài tập minh họa

Ví dụ 1:

Tìm số phức liên hợp của số phức: \(z = (1 + i)(3 - 2i) + \frac{1}{{3 + i}}\).

Lời giải:

Ta có: \(z = 5 + i + \frac{{3 - i}}{{(3 + i)(3 - i)}} = 5 + i + \frac{{3 - i}}{{10}}=\frac{53}{10}+\frac{9}{10}i\)

Suy ra số phức liên hợp của số phức z là: \(\overline z = \frac{{53}}{{10}} - \frac{9}{{10}}i\).

Ví dụ 2:

Tìm môđun của số phức \(z = \frac{{(1 + i)(2 - i)}}{{1 + 2i}}\).

Lời giải:

Ta có:\(z = \frac{{(1 + i)(2 - i)}}{{1 + 2i}} = \frac{{3 + i}}{{1 + 2i}} = \frac{{\left( {3 + i} \right)\left( {1 - 2i} \right)}}{{\left( {1 + 2i} \right)\left( {1 - 2i} \right)}} = \frac{{5 + i}}{5} = 1 + \frac{1}{5}i.\)

Vậy môđun của số phức z là: \(\left| z \right| = \sqrt {1 + {{\left( {\frac{1}{5}} \right)}^2}} = \frac{{\sqrt {26} }}{5}\).

Ví dụ 3: 

Tìm phần thực, phần ảo và tính môđun của số phức z thỏa: \({\left( {1 + i} \right)^2}\left( {2 - i} \right)z = 8 + i + \left( {1 + 2i} \right)z.\)

Lời giải:

\({\left( {1 + i} \right)^2}\left( {2 - i} \right)z = 8 + i + \left( {1 + 2i} \right)z\)

\(\Leftrightarrow z = \frac{{8 + i}}{{1 + 2i}} = \frac{{\left( {8 + i} \right)\left( {1 - 2i} \right)}}{{\left( {1 + 2i} \right)\left( {1 - 2i} \right)}} = \frac{{10 - 15i}}{5} = 2 - 3i.\)

Vậy z có phần thực bằng 2, phần ảo bằng -3, môđun \(\left| z \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}} = \sqrt {13} .\)

Ví dụ 4:

Tìm số phức z thỏa: \(\frac{{(\overline z - 1).(2 - i)}}{{\overline z + 2i}} = \frac{{3 + i}}{2}\)

Lời giải:

Điều kiện: \(\overline z \ne -2i\) hay \(z\ne 2i\)

Khi đó:  \(\frac{{(\overline z - 1).(2 - i)}}{{\overline z + 2i}} = \frac{{3 + i}}{2}\)\(\Leftrightarrow 2(\overline z - 1)(2 - i) = (3 + i)(\overline z + 2i)\)

\(\Leftrightarrow (\overline z - 1)(4 - 2i) = 3\overline z + 6i + iz + 2{i^2}\)

\(\Leftrightarrow (1 - 3i)\overline z = 2i + 4\)

\(\Leftrightarrow \overline z = \frac{{2i + 4}}{{1 - 3i}} = \frac{{(2i + 4)(1 + 3i)}}{{10}} = \frac{{ - 1}}{5} + \frac{7}{5}i\)

\(\Rightarrow z = \frac{{ - 1}}{5} - \frac{7}{5}i\).

Ví dụ 5:

Tính số phức sau: \(z={\left( {\frac{{1 + i}}{{1 - i}}} \right)^{16}} + {\left( {\frac{{1 - i}}{{1 + i}}} \right)^8}.\)

Lời giải:

Ta có:  \(\frac{{1 + i}}{{1 - i}} = \frac{{(1 + i)(1 + i)}}{2} = \frac{{2i}}{2} = i\)\(\Rightarrow \frac{{1 - i}}{{1 + i}} = \frac{1}{i} = - i.\)

Vậy: \({\left( {\frac{{1 + i}}{{1 - i}}} \right)^{16}} + {\left( {\frac{{1 - i}}{{1 + i}}} \right)^8} = {i^{16}} + {( - i)^8} = {({i^2})^8} + {\left( {{{\left( { - i} \right)}^2}} \right)^4} = 1 + 1 = 2.\)

 

-- Mod Toán Học 12 HỌC247