Bài 2: Tích vô hướng của hai vectơ - Hình học 10

5 trắc nghiệm 7 bài tập SGK

Bài trước chúng ta đã nhắc đến giá trị lượng giác của một góc bất kì từ 0 đến 180 độ, hôm nay chúng ta sẽ được biết đến khái niệm Tích vô hướng của hai vectơ, liệu sẽ bằng 1 vectơ khác hay một giá trị đại số?

Tóm tắt lý thuyết

1. Góc giữa hai vectơ

Cho hai vectơ \(\vec a\) và \(\vec b\) được mô tả như hình sau:

gocgiuahaivecto

Số đo góc trên được gọi là số đo của góc giữa hai vectơ \(\vec a\) và \(\vec b\).

Nếu số đo ấy bằng 90 độ, ta nói \(\vec a\) vuông góc với \(\vec b\)

2. Định nghĩa tích vô hướng của hai vectơ

Tích vô hướng của hai vectơ \(\vec a\) và \(\vec b\) là một số (đại lượng đại số), được kí hiệu là \(\vec a.\vec b\) và được xác định bởi công thức

\(\vec a.\vec b=|\vec a|.|\vec b|.cos\left ( \vec a,\vec b \right )\)

Bình phương vô hướng

Với mỗi vectơ \(\vec a\) tùy ý, tích vô hướng \(\vec a.\vec a\) được kí hiệu là \(|\vec a|^2\) được gọi là bình phương vô hướng

Ta có:

\(\vec a^2=|\vec a|.|\vec a|.cos0^o=|\vec a|^2\)

Như vậy:

Bình phương vô hướng của một vectơ bằng bình phương độ dài của vectơ đó

3. Tính chất của tích vô hướng

1. Định lí

Với ba vectơ \(\vec a,\vec b,\vec c\) tùy ý và một số thực k, ta có:

\(\vec a.\vec b=\vec b.\vec a\) (tính chất giao hoán)

\(\vec a.\vec b=0\Leftrightarrow \vec a\perp \vec b\)

\((k\vec a).\vec b=\vec a.(k\vec b)=k.(\vec a.\vec b)\) 

\(\vec a. (\vec b\pm \vec c)=\vec a.\vec b\pm \vec a.\vec c\) (tính chất phân phối tổng hiệu)

2. Phương tích của một điểm đối với một đường tròn

phuongtich

Ta dễ dàng chứng minh được \(MT^2=MA.MB\) thông qua việc chứng minh tam giác đồng dạng

Mặc khác theo định lý Pytago vào tam giác OMT vuông tại T (vì MT là tiếp tuyến)

Ta có: \(MT^2=OM^2-OT^2\)

Theo ý trên: \(MA.MB=\vec{MA}.\vec{MB}\) (vì M, A, B thẳng hàng)

Vậy: \(\vec{MA}.\vec{MB}=OM^2-OT^2\)

Đây chính là phương tích của điểm M đối với đường tròn (O).

4. Biểu thức tọa độ của tích vô hướng

Cho hai vectơ \(\vec{a}(x;y);\vec{b}(x';y')\). Khi đó:

\(\vec{a}.\vec{b}=xx'+yy'\)

\(|\vec{a}|=\sqrt{x^2+y^2}\)

\(cos(\vec{a};\vec{b})=\frac{xx'+yy'}{\sqrt{x^2+y^2}.\sqrt{x'^2+y'^2}},\vec{a}\neq \vec{0};\vec{b}\neq \vec{0}\)

\(\vec{a}\perp \vec{b}\Leftrightarrow xx'+yy'=0\)

Bài tập minh họa

Bài tập cơ bản

Bài 1: Tính tích vô hướng của \(\vec{a}(2;3)\) và \(\vec{b}(1;1)\) biết chúng tạo với nhau một góc \(30^o\)

Hướng dẫn: Áp dụng công thức tính tích vô hướng của hai vectơ, ta có: \(\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|.cos30\)

\(=\sqrt{2^2+3^2}.\sqrt{1^2+1^2}.\frac{\sqrt{3}}{2}=\frac{\sqrt{78}}{2}\)

Bài 2: Cho hình vuông ABCD cạnh a đường chéo BD. Tính các tích vô hướng sau: \(\vec{AD}.\vec{AB}\), \(\vec{AD}.\vec{BD}\) và \(\vec{AB}.\vec{CD}\)

Hướng dẫn: 

Vì \(AD\perp AB\) nên \(\vec{AD}.\vec{AB}=0\)

\(\vec{AD}.\vec{BD}=|\vec{AD}|.|\vec{BD}|cosADB=a.a\sqrt{2}.cos45=a^2\)

\(\vec{AB}.\vec{CD}=|\vec{AB}|.|\vec{CD}|.cos0^o=a^2\)

Bài tập nâng cao

Bài 1: Tính giá trị của biểu thức \(A=\frac{11tan\alpha-5cot\alpha}{34tan\alpha+2cot\alpha}\) biết \(sin\alpha=\frac{1}{4}\)

Hướng dẫn: 

Ta có: \(A=\frac{11tan\alpha-5cot\alpha}{34tan\alpha+2cot\alpha}\)\(=\frac{11\frac{sin\alpha}{cos\alpha}-5\frac{cos\alpha}{sin\alpha}}{34\frac{sin\alpha}{cos\alpha}+2\frac{cos\alpha}{sin\alpha}}\)\(=\frac{11sin^2\alpha-5cos^2\alpha}{34sin^2\alpha+2cos^2\alpha}\)

\(=\frac{16sin^2\alpha-5}{36sin^2\alpha+2}\)

\(=\frac{16.(0,25)^2-5}{32.(0,25)^2+2}=-1\)

Bài 2: Chứng minh biểu thức sau không phụ thuộc vào x:

\(B=2(sin^6x+cos^6x)-3(sin^4x+cos^4x)\)

Hướng dẫn: 

Ta có:

\(B=2(sin^6x+cos^6x)-3(sin^4x+cos^4x)\)

\(=2(sin^2x+cos^2x)(sin^4x-sin^2xcos^2x+cos^4x)-3(sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x)\)

\(=2(sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x)-3(1-2sin^2xcos^2x)\)

\(=2(1-3sin^2xcos^2x)-3(1-2sin^2xcos^2x)\)

\(=-1\)

Vậy biểu thức trên không phụ thuộc vào giá trị của góc x

-- Mod Toán Học 10 HỌC247