Tìm điểm A cách N một khoảng nhỏ nhất để N dao động với biên độ cực tiểu?

Tìm điểm A cách N một khoảng nhỏ nhất để N dao động với biên độ cực tiểu?

bởi Phạm Hoàng Thị Trà Giang ngày 13/09/2017

Ai giúp em không ạ ^^

Tại hai điểm A và B trên mặt nước cách nhau 16 cm có 2 nguồn giống nhau. Điểm M nằm trên mặt nước và nằm trên đường trung trực của AB cách trung điểm I của AB một khoảng nhỏ nhất bằng \(4\sqrt{5}\) cm, luôn dao động cùng pha với I. Điểm N nằm trên mặt nước và nằm trên đường thẳng vuông góc với AB tại A, cách A một khoảng nhỏ nhất bằng bao nhiêu để N dao động với biên độ cực tiểu?

Theo dõi (0)

Câu trả lời (2)

  • Phương trình sóng tại I  và M lần lượt là:

    \(u_1 = 2 a cos(\omega t - \frac{2 \pi d_1}{\lambda })\)

    \(u_M = 2a cos (\omega t - \frac{2 \pi d_M}{\lambda })\)

    Vì I và M là hai điểm gần nhau nhất dao động cùng pha tức là:

    \(\Delta \varphi = \frac{2 \pi d_M}{\lambda } - \frac{2 \pi d_1}{\lambda } = 2 \pi\)

    \(\Leftrightarrow d_M - d_1 = \lambda (1)\)

    Mặt khác từ hình vẽ ta có:

    \(d_M^2 = d_1^2 + IM^2 \Rightarrow d_M = \sqrt{8^2 + (4\sqrt{5})^2} = 12 cm (2)\)(Chú ý: d1 = AB/ 2 = 8 cm)

    Từ (1) và (2) →\(\lambda = 4cm\)

    Số vân cực tiểu giao thoa: \(- AB < (k +0,5)\lambda

    Từ hình vẽ ta thấy, để N gần A nhất thì N phảo là giao thoa của vân cực tiểu thứ 4 với đường thẳng đi qua A và vuông góc với AB. Ta có: (chú ý d1 là khoảng cách AN cần tìm)

    \(\left\{\begin{matrix} d_2 - d_1 = 3,5 \lambda \\ d_2^2 - d_1^2 = AB^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} d_2 - d_1 = 14\\ (d_2 - d_1)(d_2 + d_1)= 16^2\end{matrix}\right.\)

    \(\Leftrightarrow \left\{\begin{matrix} d_2 = 14 + d_1\\ 14 (14 + d_1 + d_1) = 16^2\end{matrix}\right.\Rightarrow d_1 = 2,14 cm\)

    bởi Co Nan ngày 13/09/2017
    Like (0)
  • cam on nhieu ...

    bởi Phạm Hoàng Thị Trà Giang ngày 15/09/2017
    Like (0)
Gửi câu trả lời Hủy

 

Các câu hỏi có liên quan